Skip to main content

Various utilities for working with AWS in Python 3. for the mir project

Project description

Code style: black

navalmartin_mir_aws_utils

Various utilities for working with AWS in Python. The official PyPi package can be found here. This package is basically wrappers on top of boto3 that allow for easier development with AWS.

Dependencies

  • boto3
  • pydantic
  • pydantic[email]

Installation

Installing the utilities via pip

pip install navalmartin-mir-aws-utils

For a specific version you can use

pip install navalmartin-mir-aws-utils==x.x.x

You can uninstall the project via

pip uninstall navalmartin-mir-aws-utils

How to use

Below are several examples of using the provided utilities. In general, for the examples to work you need to install AWS CLI and configure it with your credentials.

You can check which specific version you have installed by

import navalmartin_mir_aws_utils
print(navalmartin_mir_aws_utils.__version__)

Signup/signout AWS Cognito

from navalmartin_mir_aws_utils import AWSCredentials_CognitoIDP
from navalmartin_mir_aws_utils.cognito_idp_utils import (global_signout_user_from_pool,
                                                         authenticate_and_get_token_for_user)
from navalmartin_mir_aws_utils.utils import AWSCognitoSignInUserData

AWS_REGION = ""
AWS_COGNITO_POOL_ID = ""
AWS_COGNITO_CLIENT_ID = ""
AWS_COGNITO_CLIENT_SECRET = ""

if __name__ == '__main__':
    user_data = AWSCognitoSignInUserData(username="",
                                         password="")

    aws_credentials = AWSCredentials_CognitoIDP(aws_region=AWS_REGION,
                                                aws_cognito_pool_id=AWS_COGNITO_POOL_ID,
                                                aws_cognito_client_id=AWS_COGNITO_CLIENT_ID,
                                                aws_cognito_client_secret=AWS_COGNITO_CLIENT_SECRET,
                                                aws_access_key=None, aws_secret_access_key=None)

    response = authenticate_and_get_token_for_user(aws_cognito_credentials=aws_credentials,
                                                   user_data=user_data)

    access_token = response["AuthenticationResult"]["AccessToken"]
    print(f"Access token {access_token}")

    response = global_signout_user_from_pool(access_token=access_token,
                                             credentials=aws_credentials)

    print(f"Revoke response {response}")

Work with S3

Deleting objects with specific key

from navalmartin_mir_aws_utils.aws_credentials import AWSCredentials_S3
from navalmartin_mir_aws_utils.s3_utils import delete_all_objs_with_key

AWS_REGION = "YOUR_AWS_REGION"
AWS_S3_BUCKET_NAME = "YOUR_AWS_S3_BUCKET_NAME"
AWS_ACCESS_KEY = "YOUR_AWS_ACCESS_KEY"
AWS_SECRET_ACCESS_KEY = "YOUR_AWS_SECRET_ACCESS_KEY"

if __name__ == '__main__':
    aws_s3_credentials = AWSCredentials_S3(aws_s3_bucket_name=AWS_S3_BUCKET_NAME,
                                           aws_region=AWS_REGION,
                                           aws_access_key=AWS_ACCESS_KEY,
                                           aws_secret_access_key=AWS_SECRET_ACCESS_KEY)

    key = "63b5bc8cc5f1cdcad7ef54e7/"

    delete_response = delete_all_objs_with_key(key=key,
                                               aws_creds=aws_s3_credentials)
    print(delete_response)

Create an FilePathBatch

The utilities allow you to create batches of files and read these files sequentially. The class FilePathBatch attempts to do most of the common chores needed

from pathlib import Path
from navalmartin_mir_aws_utils import FilePathBatch
from navalmartin_mir_aws_utils import AWSCredentials_S3

AWS_REGION = "YOUR_AWS_REGION"
AWS_S3_BUCKET_NAME = "YOUR_AWS_S3_BUCKET_NAME"
AWS_ACCESS_KEY = "YOUR_AWS_ACCESS_KEY"
AWS_SECRET_ACCESS_KEY = "YOUR_AWS_SECRET_ACCESS_KEY"
IMAGE_STR_TYPES = ('.jpg', '.png', '.jpeg')

def read_pil_image_to_byte_string(image_path: Path):
    try:
        import PIL
        from PIL import Image
        import io

        image = Image.open(image_path)
        img_byte_arr = io.BytesIO()
        # image.save expects a file-like as a argument
        image.save(img_byte_arr, format=image.format)
        # Turn the BytesIO object back into a bytes object
        imgByteArr = img_byte_arr.getvalue()
        return imgByteArr
    except ModuleNotFoundError as e:
        print(f"ERROR: This example needs module {str(e)}")
    except PIL.UnidentifiedImageError as e:
        print(f"ERROR: This does not look like an image file. {str(e)}")
    except Exception as e:
        print(f"{str(e)}")

if __name__ == '__main__':
    aws_s3_credentials = AWSCredentials_S3(aws_s3_bucket_name=AWS_S3_BUCKET_NAME,
                                           aws_region=AWS_REGION,
                                           aws_access_key=AWS_ACCESS_KEY,
                                           aws_secret_access_key=AWS_SECRET_ACCESS_KEY)

    image_batch = FilePathBatch(s3_credentials=aws_s3_credentials,
                                do_build_client=False)

    # set the files from localhost
    image_batch.load_from_list(files=['/home/alex/qi3/mir_lambda_tasks/test_images/img_7_8.jpg',
                                      '/home/alex/qi3/mir_lambda_tasks/test_images/img_7_3.jpg',
                                      '/home/alex/qi3/mir_lambda_tasks/test_images/not_an_image.txt',
                                      '/home/alex/qi3/mir_lambda_tasks/test_images/not_an_image.png'])

    print(f"Number of files in batch {len(image_batch)}")
    print(f"The 2nd file is {image_batch[2]}")

    # read the image...
    image_byte = image_batch.read_file_byte_string(key=1, read_from_local_host=True,
                                                   file_reader=read_pil_image_to_byte_string)

    # read the image...this is not an image
    image_byte = image_batch.read_file_byte_string(key=2, read_from_local_host=True,
                                                   file_reader=read_pil_image_to_byte_string)

    # read the image...this is not an image
    image_byte = image_batch.read_file_byte_string(key=3, read_from_local_host=True,
                                                   file_reader=read_pil_image_to_byte_string)

    # read the images
    file_prefix = "YOUR-PREFIX"
    image_batch.read(prefixes=(file_prefix,),
                     valid_image_extensions=IMAGE_STR_TYPES,
                     delimiter='/')

    for image_file in image_batch:
        print(image_file)

Message an SQS queue

Send a message to an SQS queue

from navalmartin_mir_aws_utils.aws_credentials import AWSCredentials_SQS
from navalmartin_mir_aws_utils.sqs_queue_config import SQSMessageConfig
from navalmartin_mir_aws_utils.sqs_utils import send_sqs_message

AWS_REGION = "YOUR_AWS_REGION"
AWS_S3_BUCKET_NAME = "YOUR_AWS_S3_BUCKET_NAME"
AWS_ACCESS_KEY = "YOUR_AWS_ACCESS_KEY"
AWS_SECRET_ACCESS_KEY = "YOUR_AWS_SECRET_ACCESS_KEY"
AWS_SQS_URL = "YOUR_AWS_SQS_URL"
AWS_SQS_NAME = "YOUR_AWS_SQS_NAME"
AWS_SQS_GROUP_ID = "YOUR_AWS_SQS_GROUP_ID"

if __name__ == '__main__':
    aws_sqs_credentials = AWSCredentials_SQS(aws_sqs_queue_name=AWS_SQS_NAME,
                                             aws_queue_url=AWS_SQS_URL,
                                             aws_region=AWS_REGION,
                                             aws_access_key=AWS_ACCESS_KEY,
                                             aws_secret_access_key=AWS_SECRET_ACCESS_KEY)

    message = "task_id:123"
    sqs_msg = SQSMessageConfig(message_body=message,
                               message_group_id=AWS_SQS_GROUP_ID,
                               message_attributes=None,
                               message_deduplication_id="123")

    response = send_sqs_message(sqs_credentials=aws_sqs_credentials,
                                sqs_msg=sqs_msg)

    print(response)

    read_response = read_one_sqs_message(aws_sqs_credentials)
    print(read_response)

    receipt_handle = read_response['Messages'][0]['ReceiptHandle']
    # get the receipt handler to delete the message
    # this signals that the message has been consumed
    delete_response = delete_sqs_message(aws_sqs_credentials, receipt_handle=receipt_handle)
    print(delete_response)

Using SecretsManager

Belowe the required credentials are accessed via what you have entered when you configured AWS CLI on your machine.

from botocore.exceptions import ClientError
from navalmartin_mir_aws_utils import get_aws_client_factory, AWSCredentials_SecretsManager

AWS_SECRET_NAME = "YOUR-AWS-Secrets-Manager"
AWS_REGION = "YOUR-AWS-REGION"

if __name__ == '__main__':

    try:
        credentials = AWSCredentials_SecretsManager(aws_region=AWS_REGION,
                                                    secret_name=AWS_SECRET_NAME)
        client = get_aws_client_factory(credentials=credentials)

        get_secret_value_response = client.get_secret_value(SecretId=credentials.secret_name)
        print(get_secret_value_response)
    except ClientError as e:
        print(str(e))

Using SES

SES is a simple email service that we can use to send marketing emails such as special offers, transactional emails such as order confirmations, and other types of correspondence such as newsletters. You can find more details here. A nice tutorial about SES can be found at Boto3 SES – Complete Tutorial

from pydantic import EmailStr
from navalmartin_mir_aws_utils import AWSCredentials_SES
from navalmartin_mir_aws_utils.tasks import send_simple_email
from navalmartin_mir_aws_utils.utils import Email, EmailSubject, EmailBody


if __name__ == '__main__':

    credentials = AWSCredentials_SES(aws_region="eu-west-2")
    email = Email(source=EmailStr("some_email@provider.com"),
                  destination=EmailStr("some_email@provider.com"),
                  subject=EmailSubject(data="First notification from mir"),
                  body=EmailBody(data="This your first AWS SES notification from mir. Expect more"),
                  reply_to=EmailStr("q@some-email.com"))

    print(email.dict())
    response = send_simple_email(email=email, credentials=credentials)
    print(response)

Note that for the code above to work, you need to have a registered email address with AWS. Also, the email you have registered will be initially in a sandbox therefore you won't be able to actually send emails to others unless the destination email is also a verified email with AWS.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

navalmartin_mir_aws_utils-0.0.32.tar.gz (21.2 kB view details)

Uploaded Source

Built Distribution

navalmartin_mir_aws_utils-0.0.32-py3-none-any.whl (28.2 kB view details)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page