Internal functions for NCAA March Madness 2020
Project description
ncaa-march-madness-2020
The goal of ncaa-march-madness-2020 is to store the notebooks for this Kaggle Competition, see GitBook including
- Baseline
- XGBOOST
- Target encoding
- ID embedding
- GBDT + LR
- GBDT + LR k-fold
- Linear vs.聽Tree linear?
- Auto-encoder
- Python
How to use
All notebooks work in the analysis
directory, and save all data files
in input
, output
and data
directories.
fs::dir_tree("analysis", recurse = TRUE, regexp = "ipynb")
#> analysis
#> +-- baseline.ipynb
#> +-- evaluate-features.ipynb
#> +-- gbdt_lr.ipynb
#> +-- gbdt_lr_CV.ipynb
#> +-- id2vec.ipynb
#> +-- linear-base-learner.ipynb
#> +-- march-madness-2020-ncaam-simple-lightgbm-on-kfold.ipynb
#> +-- Obtain_Answer.ipynb
#> +-- outliers.ipynb
#> +-- params_tuning.ipynb
#> +-- paris-madness.ipynb
#> +-- pkg_test.ipynb
#> \-- target-encoding.ipynb
fs::dir_tree(recurse = TRUE, regexp = "input|output|data")
#> .
#> +-- data
#> | +-- feature_importances.csv
#> | +-- id2vec.npy
#> | +-- NCAA2020_Kenpom.csv
#> | +-- outlier_df.csv
#> | +-- submission_True.csv
#> | +-- team_strength_embedding.csv
#> | +-- Tourney_Reuslt.csv
#> | \-- Tourney_Reuslt_inputs.csv
#> +-- input
#> | +-- google-cloud-ncaa-march-madness-2020-division-1-mens-tournament
#> | | +-- MDataFiles_Stage1
#> | | | +-- Cities.csv
#> | | | +-- Conferences.csv
#> | | | +-- MConferenceTourneyGames.csv
#> | | | +-- MGameCities.csv
#> | | | +-- MMasseyOrdinals.csv
#> | | | +-- MNCAATourneyCompactResults.csv
#> | | | +-- MNCAATourneyDetailedResults.csv
#> | | | +-- MNCAATourneySeedRoundSlots.csv
#> | | | +-- MNCAATourneySeeds.csv
#> | | | +-- MNCAATourneySlots.csv
#> | | | +-- MRegularSeasonCompactResults.csv
#> | | | +-- MRegularSeasonDetailedResults.csv
#> | | | +-- MSeasons.csv
#> | | | +-- MSecondaryTourneyCompactResults.csv
#> | | | +-- MSecondaryTourneyTeams.csv
#> | | | +-- MTeamCoaches.csv
#> | | | +-- MTeamConferences.csv
#> | | | +-- MTeams.csv
#> | | | \-- MTeamSpellings.csv
#> | | +-- MEvents2015.csv
#> | | +-- MEvents2016.csv
#> | | +-- MEvents2017.csv
#> | | +-- MEvents2018.csv
#> | | +-- MEvents2019.csv
#> | | +-- MPlayers.csv
#> | | \-- MSampleSubmissionStage1_2020.csv
#> | \-- google-cloud-ncaa-march-madness-2020-division-1-mens-tournament.zip
#> +-- large_data
#> \-- output
#> \-- paris-submission.csv
Download Data
From https://github.com/Kaggle/kaggle-api
kaggle competitions download -c google-cloud-ncaa-march-madness-2020-division-1-mens-tournament -p input
mkdir input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament
unzip input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament.zip -d input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament
Code of Conduct
Please note that the ncaa-march-madness-2020
project is released with
a Contributor Code of
Conduct.
By
contributing to this project, you agree to abide by its terms.
License
What license it uses 漏 Jiaxiang Li;Jiatao Li;Zhipeng Liang;Yue Pan
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ncaa_march_madness_2020-0.0.1.tar.gz
.
File metadata
- Download URL: ncaa_march_madness_2020-0.0.1.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | acf79b2dd5a99a44833c94a7fc07353a96a801830f44930cad0077d626bbf6e8 |
|
MD5 | fec6d2a3c7c9bfe1bc1e8fdd7e0e98f0 |
|
BLAKE2b-256 | f790b4e60ec018b4ab408cc9dbe422365f7a509cb8f40c3da285dc117ee4021c |
File details
Details for the file ncaa_march_madness_2020-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: ncaa_march_madness_2020-0.0.1-py3-none-any.whl
- Upload date:
- Size: 5.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b95c316ce9694aa8db33e3040008f0dbb55fed9b41dca46ca8b6524d9d302326 |
|
MD5 | fa823ae7186bd1058b0761aa7b5a09be |
|
BLAKE2b-256 | 175fcfef90dc351a9fa9748c394b8bb32883779800cd0d7d29c166e9b483acbd |