Skip to main content

ncnn is a high-performance neural network inference framework optimized for the mobile platform

Project description

ncnn-vulkan

This fork aims to provide vulkan functionality to the ncnn python bindings, which is absent in the official package. All that is needed to use vulkan is the addition of net.opt.use_vulkan_compute = True.

Also in this fork, failed vram allocation will result in a runtime error that is catchable, allowing you to clear the allocated vram on this error by using ncnn.destroy_gpu_instance().

Minimal example:

import cv2
from ncnn_vulkan import ncnn
import numpy as np

net = ncnn.Net()

# Use vulkan compute
net.opt.use_vulkan_compute = True

# Load model param and bin
net.load_param("./x4.param")
net.load_model("./x4.bin")

ex = net.create_extractor()

# Load image using opencv
img = cv2.imread("./example.jpg")

# Convert image to ncnn Mat
mat_in = ncnn.Mat.from_pixels(
    img,
    ncnn.Mat.PixelType.PIXEL_BGR,
    img.shape[1],
    img.shape[0]
)

# Normalize image (required)
# Note that passing in a normalized numpy array will not work.
mean_vals = []
norm_vals = [1 / 255.0, 1 / 255.0, 1 / 255.0]
mat_in.substract_mean_normalize(mean_vals, norm_vals)

# Try/except block to catch out-of-memory error
try:
    # Make sure the input and output names match the param file
    ex.input("data", mat_in)
    ret, mat_out = ex.extract("output")
    out = np.array(mat_out)

    # Transpose the output from `c, h, w` to `h, w, c` and put it back in 0-255 range
    output = out.transpose(1, 2, 0) * 255

    # Save image using opencv
    cv2.imwrite('./out.png', output)
except:
    ncnn.destroy_gpu_instance()

original readme

License download codecov Language grade: C/C++

ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployment and uses on mobile phones from the beginning of design. ncnn does not have third party dependencies. It is cross-platform, and runs faster than all known open source frameworks on mobile phone cpu. Developers can easily deploy deep learning algorithm models to the mobile platform by using efficient ncnn implementation, create intelligent APPs, and bring the artificial intelligence to your fingertips. ncnn is currently being used in many Tencent applications, such as QQ, Qzone, WeChat, Pitu and so on.

ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,天天P图等。


技术交流QQ群:637093648(超多大佬) 答案:卷卷卷卷卷 (已满)

Pocky QQ群(MLIR YES!): 677104663(超多大佬) 答案:multi-level intermediate representation

Telegram Group https://t.me/ncnnyes

Discord Channel https://discord.gg/YRsxgmF


Current building status matrix

System CPU (32bit) CPU (64bit) GPU (32bit) GPU (64bit)
Linux (GCC) Build Status Build Status Build Status
Linux (Clang) Build Status Build Status Build Status
Linux (ARM) Build Status Build Status
Linux (MIPS) Build Status Build Status
Linux (RISC-V) Build Status
Linux (LoongArch) Build Status
Windows Build Status Build Status Build Status
Windows (ARM) Build Status Build Status
macOS Build Status Build Status
macOS (ARM) Build Status Build Status
Android Build Status Build Status Build Status Build Status
Android-x86 Build Status Build Status Build Status Build Status
iOS Build Status Build Status Build Status
iOS Simulator Build Status Build Status
WebAssembly Build Status
RISC-V GCC/Newlib Build Status Build Status

Support most commonly used CNN network

支持大部分常用的 CNN 网络


HowTo

how to build ncnn library on Linux / Windows / macOS / Raspberry Pi3 / Android / NVIDIA Jetson / iOS / WebAssembly / AllWinner D1 / Loongson 2K1000

download prebuild binary package for android and ios

use ncnn with alexnet with detailed steps, recommended for beginners :)

ncnn 组件使用指北 alexnet 附带详细步骤,新人强烈推荐 :)

use netron for ncnn model visualization

out-of-the-box web model conversion

ncnn low-level operation api

ncnn param and model file spec

ncnn operation param weight table

how to implement custom layer step by step


FAQ

ncnn throw error

ncnn produce wrong result

ncnn vulkan


Features

  • Supports convolutional neural networks, supports multiple input and multi-branch structure, can calculate part of the branch
  • No third-party library dependencies, does not rely on BLAS / NNPACK or any other computing framework
  • Pure C++ implementation, cross-platform, supports android, ios and so on
  • ARM NEON assembly level of careful optimization, calculation speed is extremely high
  • Sophisticated memory management and data structure design, very low memory footprint
  • Supports multi-core parallel computing acceleration, ARM big.LITTLE cpu scheduling optimization
  • Supports GPU acceleration via the next-generation low-overhead vulkan api
  • Extensible model design, supports 8bit quantization and half-precision floating point storage, can import caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) models
  • Support direct memory zero copy reference load network model
  • Can be registered with custom layer implementation and extended
  • Well, it is strong, not afraid of being stuffed with 卷 QvQ

功能概述

  • 支持卷积神经网络,支持多输入和多分支结构,可计算部分分支
  • 无任何第三方库依赖,不依赖 BLAS/NNPACK 等计算框架
  • 纯 C++ 实现,跨平台,支持 android ios 等
  • ARM NEON 汇编级良心优化,计算速度极快
  • 精细的内存管理和数据结构设计,内存占用极低
  • 支持多核并行计算加速,ARM big.LITTLE cpu 调度优化
  • 支持基于全新低消耗的 vulkan api GPU 加速
  • 可扩展的模型设计,支持 8bit 量化 和半精度浮点存储,可导入 caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) 模型
  • 支持直接内存零拷贝引用加载网络模型
  • 可注册自定义层实现并扩展
  • 恩,很强就是了,不怕被塞卷 QvQ

supported platform matrix

  • ✅ = known work and runs fast with good optimization
  • ✔️ = known work, but speed may not be fast enough
  • ❔ = shall work, not confirmed
  • / = not applied
Windows Linux Android macOS iOS
intel-cpu ✔️ ✔️ ✔️ /
intel-gpu ✔️ ✔️ /
amd-cpu ✔️ ✔️ ✔️ /
amd-gpu ✔️ ✔️ /
nvidia-gpu ✔️ ✔️ /
qcom-cpu ✔️ / /
qcom-gpu ✔️ ✔️ / /
arm-cpu / /
arm-gpu ✔️ / /
apple-cpu / / / ✔️
apple-gpu / / / ✔️ ✔️

Example project


License

BSD 3 Clause

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ncnn_vulkan-2023.6.18-cp311-cp311-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

ncnn_vulkan-2023.6.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ncnn_vulkan-2023.6.18-cp311-cp311-macosx_11_0_arm64.whl (7.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ncnn_vulkan-2023.6.18-cp311-cp311-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

ncnn_vulkan-2023.6.18-cp310-cp310-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

ncnn_vulkan-2023.6.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ncnn_vulkan-2023.6.18-cp310-cp310-macosx_11_0_arm64.whl (7.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ncnn_vulkan-2023.6.18-cp310-cp310-macosx_10_9_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

ncnn_vulkan-2023.6.18-cp39-cp39-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

ncnn_vulkan-2023.6.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ncnn_vulkan-2023.6.18-cp39-cp39-macosx_11_0_arm64.whl (7.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ncnn_vulkan-2023.6.18-cp39-cp39-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

ncnn_vulkan-2023.6.18-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

ncnn_vulkan-2023.6.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ncnn_vulkan-2023.6.18-cp38-cp38-macosx_11_0_arm64.whl (7.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

ncnn_vulkan-2023.6.18-cp38-cp38-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ncnn_vulkan-2023.6.18-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

ncnn_vulkan-2023.6.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ncnn_vulkan-2023.6.18-cp37-cp37m-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

ncnn_vulkan-2023.6.18-cp36-cp36m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

ncnn_vulkan-2023.6.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

ncnn_vulkan-2023.6.18-cp36-cp36m-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file ncnn_vulkan-2023.6.18-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6b28e8388661bce0b2c36a9e6ca8ed6911e09f15136da12f2a7f9b49eb38aff1
MD5 1d5696d67cf06742d464d5195db655ea
BLAKE2b-256 748df0117a1d5b80d519446b66a57d348e44b7a7aac567f07e2376dcce39e6a8

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df62e11ac51d7f86732877103b9bbdb20b6fa3a5e758b59b4232aaf09f50b731
MD5 6d4ab2657fde429926305a1257a2d2d9
BLAKE2b-256 219097c1723575629998a109802677b1a28af0387b48bebf1c1cea16b417a60c

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 00c3d04845ebdf24b30329e72a4dc52fa4911e6fc76dc1e43fb39558bfdc67de
MD5 f8fe3c13d731d13a7ee26e0ef5435f37
BLAKE2b-256 1e2396f01ea14617364a41d1653962db0ec776fb1ca195b770d43e4fcf5bdf8c

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b969bb0f5aae54ce958af9e9906f541a42b2f0314c01fad207f20b534456e185
MD5 7d788db1f591541f5116b45e6b1416c1
BLAKE2b-256 a44bd5ca29af51d6741a682b55fb46baee63067230b00fc8d360c0cd666122cb

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e6526cdc5a38038b75cad0ca695a9b9412671214688eeba4735080e4514e6b31
MD5 26b955927392f11970dbdbcba0b327a4
BLAKE2b-256 852f70b2ca1f36d56e037e141985961b10ac40d9542e9df329a4d42925b46aa3

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49ed5e293755b5d6ee445606cc77c8842bd1886f71d859eca21ca35cb2e8b2bb
MD5 25e532fb2fdc773cdb2c87c1bb07f3d0
BLAKE2b-256 87c1e192431d61b0ff55653161bf60e94003f6b2bf9bfc91de15d5c310a1d352

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d1e4eb2d314aafc1fab3114cb361d1109531ee4182dc3e3062b21b9b9bf7a65
MD5 b21f689febf5b237b520f604825a0331
BLAKE2b-256 5725494aa9490f496013085cd3f2017c057b669e7ee4ab0f94fe4b4e163ada86

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c33910ccc16cfddac64043722d7ef4dcd35a009608c1a0c99f1af8506e149da7
MD5 cee22274e6fbe2ca67d2a06f9fc52b96
BLAKE2b-256 29a1ee9c7b3f7b723a0223b747dfc75559a2918c269f9b59012565deaf76d3c2

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 af3f506cba5f1725157971e7ebf01018e7af03705121763e009bf07c909b4748
MD5 3f4b5a3253100b7bb13bc439e5a009d3
BLAKE2b-256 37f2abc20ba1c9508ef614292165c9a1d208f722a1347b0bc9881aefd0e7c185

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb6fa4cb5d488e4e95202168d8ed9bde2925602b093fd3980c12b9efad6e3022
MD5 5485d212f1e323c39cc7fc5e8a438c07
BLAKE2b-256 2f0d861e4c709249b336266f7c9a86bdd720f852f5bb5ffef453bd0b0005d58e

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06f8a00e979b68f196cc27cd3cbd3050e38baa099f4dd69c11144349f8331d07
MD5 2c427d446ab22853e7696d2bfe56d6e2
BLAKE2b-256 db2e3737836ae180e3c52abb4cf55a31d10164188e6341afa885e5d421352d4b

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4f8f0b326997a7acb2b317d07b09709d0f89a41ae2daa75a704bc0b520ac09c5
MD5 291851b9d3120b8dbad142ffa068b1c7
BLAKE2b-256 f621bb70c7ef41f79dd41a7804063d6db9200b2b5f6faae5f6ec250684332c34

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7d0a5fdffa0b3499096b420ec360393085f3baf288425b93559d483783bc9f68
MD5 5b79e88161b952965f33b8e8035e05f4
BLAKE2b-256 e925e39703fa931cf3a1e26f2f7926b674f6426f495fef797ef630ecd38155ba

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 418daecc98c1f775b17bc9b79c3280faeb7b9d048d39d9a60c9fc086fef7b909
MD5 c10cc17ed0fee706e75d6c0b0d95836d
BLAKE2b-256 b360ebf855822a1b832d08326dd7b4ae3a1aa8f375e043d326356cde184ec85a

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 15b9154aa5550743bf04e9a400402dc192de5f470a7de6dd74df7a5c3feafa40
MD5 656796bc7752996f06e6e74919fc86d0
BLAKE2b-256 76f07563cc2e20b89e1dc81272c466357efe18caa8b8c537742ad39a540a00f9

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d75e8e5306477cdf2717af820daef0bb203a2ef1daa986a1a8e3992b77aada3
MD5 fb8d3be3fd53356325c45c3b4fa6a514
BLAKE2b-256 0d71b5439bccb3d3d13066181e426b37a3d4bb24047e68dd6844ca4e21278642

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 efd00757bc250de8e4865a16e3196bc18ec8dbdc2e885f94163eea42ac43edcc
MD5 69aa148115cb116709b72057e3627fb5
BLAKE2b-256 4bfd0e1af5d54058ec4530b552bb036dd52ce58daa96e86fe4d0ae6db662a5df

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ecc013a81ff6d0825516b02275d4b48bed76ad7d6bed5994a2542c7fb0470c55
MD5 a23de0e6c9500f43fc0ed534054a140b
BLAKE2b-256 057d75138d2d8519e004aa327a6cad5b76a5357c209a4ec3d932be293885ed4c

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e11aa7ae0f1bd18a65ee3ac099e132a2b728a725673d405e22c37b0d6708ad2
MD5 dab12fb25a982a08ce50be0a40c57959
BLAKE2b-256 10ad279f900a72d31dc0b5f844b054600555825c2e6bb6be1fbadeff4753330d

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: ncnn_vulkan-2023.6.18-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.16 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.8

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7c9de6ba4edc3b5ce700424473c2a240675a4f2973be6fc38f0b1249bd0a798c
MD5 aff01f6e11d2e47fe8a5b2378ceedb3f
BLAKE2b-256 18cd8aea080aea3493da8ab2a675fadbd3e36af792e403cf7ecb9e14b2a71ed9

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea40e346c66aad32f8c58f5f78c04b89428d05dbd40e0d4f22546f521f879995
MD5 7a7553df7de5795dccefcf29a50fcb58
BLAKE2b-256 433a8aaecb78a00c24fe20b790f6dbabaeb6894dd7b37b3741da52539b039de3

See more details on using hashes here.

File details

Details for the file ncnn_vulkan-2023.6.18-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ncnn_vulkan-2023.6.18-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 05570940934cb343a3be7aa43e59e77dfd079ab4d02a965cbb421293feae108f
MD5 c423f78a5e4efc97c11b66425f16ff7a
BLAKE2b-256 c4fd71b527167d220e9f62abcc65c9d16afc4362a2dc7351568bd88ab8c35d8c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page