Skip to main content

ncnn is a high-performance neural network inference framework optimized for the mobile platform

Project description

ncnn

License Build Status download codecov Language grade: C/C++

ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployment and uses on mobile phones from the beginning of design. ncnn does not have third party dependencies. it is cross-platform, and runs faster than all known open source frameworks on mobile phone cpu. Developers can easily deploy deep learning algorithm models to the mobile platform by using efficient ncnn implementation, create intelligent APPs, and bring the artificial intelligence to your fingertips. ncnn is currently being used in many Tencent applications, such as QQ, Qzone, WeChat, Pitu and so on.

ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,天天P图等。


技术交流QQ群:637093648(超多大佬) 答案:卷卷卷卷卷

Pocky群(MLIR YES!): 677104663(超多大佬)

Telegram Group https://t.me/ncnnyes

Discord Channel https://discord.gg/YRsxgmF


Current building status matrix

System CPU (32bit) CPU (64bit) GPU (32bit) GPU (64bit)
Linux (GCC) Build Status Build Status Build Status
Linux (Clang) Build Status Build Status Build Status
Linux (ARM) Build Status Build Status
Linux (MIPS) Build Status Build Status
Linux (RISC-V) Build Status
Windows (VS2015) Build Status Build Status
Windows (VS2017) Build Status Build Status Build Status
Windows (VS2019) Build Status Build Status Build Status
macOS Build Status Build Status
macOS (ARM) Build Status Build Status
Android Build Status Build Status Build Status Build Status
Android-x86 Build Status Build Status Build Status Build Status
iOS Build Status Build Status Build Status
iOS Simulator Build Status Build Status
WebAssembly Build Status
RISC-V GCC/Newlib Build Status Build Status

Support most commonly used CNN network

支持大部分常用的 CNN 网络


HowTo

how to build ncnn library on Linux / Windows / macOS / Raspberry Pi3 / Android / NVIDIA Jetson / iOS / WebAssembly / AllWinner D1 / Loongson 2K1000

download prebuild binary package for android and ios

use ncnn with alexnet with detailed steps, recommended for beginners :)

ncnn 组件使用指北 alexnet 附带详细步骤,新人强烈推荐 :)

use netron for ncnn model visualization

out-of-the-box web model conversion

ncnn low-level operation api

ncnn param and model file spec

ncnn operation param weight table

how to implement custom layer step by step


FAQ

ncnn throw error

ncnn produce wrong result

ncnn vulkan


Features

  • Supports convolutional neural networks, supports multiple input and multi-branch structure, can calculate part of the branch
  • No third-party library dependencies, does not rely on BLAS / NNPACK or any other computing framework
  • Pure C++ implementation, cross-platform, supports android, ios and so on
  • ARM NEON assembly level of careful optimization, calculation speed is extremely high
  • Sophisticated memory management and data structure design, very low memory footprint
  • Supports multi-core parallel computing acceleration, ARM big.LITTLE cpu scheduling optimization
  • Supports GPU acceleration via the next-generation low-overhead vulkan api
  • Extensible model design, supports 8bit quantization and half-precision floating point storage, can import caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) models
  • Support direct memory zero copy reference load network model
  • Can be registered with custom layer implementation and extended
  • Well, it is strong, not afraid of being stuffed with 卷 QvQ

功能概述

  • 支持卷积神经网络,支持多输入和多分支结构,可计算部分分支
  • 无任何第三方库依赖,不依赖 BLAS/NNPACK 等计算框架
  • 纯 C++ 实现,跨平台,支持 android ios 等
  • ARM NEON 汇编级良心优化,计算速度极快
  • 精细的内存管理和数据结构设计,内存占用极低
  • 支持多核并行计算加速,ARM big.LITTLE cpu 调度优化
  • 支持基于全新低消耗的 vulkan api GPU 加速
  • 可扩展的模型设计,支持 8bit 量化 和半精度浮点存储,可导入 caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) 模型
  • 支持直接内存零拷贝引用加载网络模型
  • 可注册自定义层实现并扩展
  • 恩,很强就是了,不怕被塞卷 QvQ

supported platform matrix

  • ✅ = known work and runs fast with good optimization
  • ✔️ = known work, but speed may not be fast enough
  • ❔ = shall work, not confirmed
  • / = not applied
Windows Linux Android macOS iOS
intel-cpu ✔️ ✔️ ✔️ /
intel-gpu ✔️ ✔️ /
amd-cpu ✔️ ✔️ ✔️ /
amd-gpu ✔️ ✔️ /
nvidia-gpu ✔️ ✔️ /
qcom-cpu ✔️ / /
qcom-gpu ✔️ ✔️ / /
arm-cpu / /
arm-gpu ✔️ / /
apple-cpu / / / ✔️
apple-gpu / / / ✔️ ✔️

Example project


License

BSD 3 Clause

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncnn-1.0.20211208.tar.gz (38.7 kB view details)

Uploaded Source

Built Distributions

ncnn-1.0.20211208-pp38-pypy38_pp73-win_amd64.whl (2.2 MB view details)

Uploaded PyPy Windows x86-64

ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

ncnn-1.0.20211208-pp37-pypy37_pp73-win_amd64.whl (2.2 MB view details)

Uploaded PyPy Windows x86-64

ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

ncnn-1.0.20211208-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

ncnn-1.0.20211208-cp310-cp310-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (674.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (845.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20211208-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

ncnn-1.0.20211208-cp39-cp39-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (673.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (846.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20211208-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

ncnn-1.0.20211208-cp38-cp38-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (673.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (845.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20211208-cp37-cp37m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

ncnn-1.0.20211208-cp37-cp37m-win32.whl (1.0 MB view details)

Uploaded CPython 3.7m Windows x86

ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (682.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (857.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

ncnn-1.0.20211208-cp36-cp36m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

ncnn-1.0.20211208-cp36-cp36m-win32.whl (1.0 MB view details)

Uploaded CPython 3.6m Windows x86

ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (682.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (857.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file ncnn-1.0.20211208.tar.gz.

File metadata

  • Download URL: ncnn-1.0.20211208.tar.gz
  • Upload date:
  • Size: 38.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208.tar.gz
Algorithm Hash digest
SHA256 68a5d69c055fe4c57064aae9a164baaaf3b4aa0d9e17a86913948ec3a4af7e84
MD5 df88f1afe6042b0e813dfcd25c8042e9
BLAKE2b-256 56ae5ce6874819e263310a087cbd6f6331a0e3b0ea871fad70d7c670f3ed6d56

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8c2bf44eeb9175a828e9923a647ecaf25f436065a69ae11dda4f2dc9d06e8db3
MD5 2a20b49712247be7310b7a7cd9c93723
BLAKE2b-256 4718c25f7763ae63ca5b448bfb3967712c9409a7992097e4c1084e86e49fb581

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa4f528faaefab0eb45d3426bc41f96a0ffcfd713e89dd7eb6e4bc86177c4bf0
MD5 c196aee378c81b044b8c2b7e88282306
BLAKE2b-256 5157aa1e99aa24ab8f548e0b6f33670e68ab808565efa4bf71e583f7bee2241f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b9483718ca1d556a0ab70e4b07528e3ab27f52203acf99189b7b05c2aa1482e4
MD5 06d9e2670453cfedd88fccd03c1547fd
BLAKE2b-256 138c8138c064c6c27cd467ff35ae63759f61f68129afe09d2c504a54bf8eceb0

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fdefedb232baefb2b1bc91db5fff92fb858a3b7abbb8b0aa191dc1c60b5537b
MD5 7091d092f7287489dfb7a25dbf1f8852
BLAKE2b-256 b79c7600dfd0d616fb73bca3f53085b457df4e598dc4c4c53d92a0d71f86e300

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0695561abf5c33657e6ee2e6db19b06fb0428993dbb067597f200c3fd60a25c6
MD5 88319ce195642db689a6442e189987bf
BLAKE2b-256 bad9db67875a0ed5e0779dd87e183870155fe394e585cd3e7c2f093ce73961b5

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c631868a6c93b5909e0def72fd27dc277d30196322a1a4aadb2e5669ce7d574
MD5 6c20409b3d777aca7b3e0ce2c7f42dad
BLAKE2b-256 0c9d229940d9dd161acd6ab794d4d2a0b4f38c814a61d7033fbfc77e2652f584

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 527023dc5b5b2c44de698b853b2eaeb1b6a273791f432cce4db767aeb192c73c
MD5 7a780b1d4476b4f4e43ecb48cf5065c9
BLAKE2b-256 ff52be95fd7d3e470ce3c98d93d7501b1399dffab48557d5905f26040145d4b5

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d428dba559635180cf3b402da2b8ea467d016e270bc5acab08b32a36e926a50
MD5 66252152fbfafe7cb675bf69ddbdb1a9
BLAKE2b-256 60085388044e68d7273bf669bb88b6d6add83dbf100e48090b94761ad85c9b75

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d7b6f101bc7dcb328f45664ded6a67bb9a996499c79807becc949683934b4862
MD5 4975b0ba03bc449a886057da5d79b89f
BLAKE2b-256 2ee5e9e2abe4e2f26be398284bf1cffd35e827a5b8ee0d389b8c678225d850df

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 87368796b69f6ab9e27efedc6b1b7f9589c3f635f175f1aedc40eadad2dfed97
MD5 2428e3369db5f40971f5eac2d83a222d
BLAKE2b-256 ed5804447a8bb61c6fd3c4beefc2b637822fa7acdfbb18453ac9a8b418663aaf

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1aebdda3ada754847163cbeb83a798cf7bbd5d0fd6690453c90a0e4d128fe60f
MD5 efa56a549b8d1c558ed4072ec41409af
BLAKE2b-256 0f0e9971dc540e729471cda1dc707d77ff1d8789cb7546195fad22130bf61831

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_s390x.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 80f30abaab3f433d19d3e47757f70aea7a423c27b60db140b221f309e9349396
MD5 6996900a12ce019159dca89ab0da3b60
BLAKE2b-256 afb087d81ad169bcef1f1f03ff528f507f889233b12a132267efb30a1838b758

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4b9a0b47cd7aaa1c013ac5d88bdda326500ebd92643fbce6c692a57880f52a9a
MD5 ca71478deed5a9345cb7dc54dc782a1f
BLAKE2b-256 c42ab17b4f46e855e29da35da3a512ae017eb40ab3fa2c5c63d4cbbb4674f6e5

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 56f0f633de84654c6793e861d49a612e8666fc5ed325bfc73861a6d42bded4fe
MD5 00e475c98970155c786604dbc6f9ea57
BLAKE2b-256 7649213e75cce194b30f580b3c817c571cc5d9b39a86b6c1fddb8c9d04974b77

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 284e51a6c94142c75d4015f98ad71666b1c6390a4a14b97c6a653ba15e782887
MD5 3b2422c543816691e37d01ced98bc4e9
BLAKE2b-256 3d91948a7e4dc5d888403fafcf912a403017f4bd4a171e6fbc42e0162835b837

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81a5d588bf1131a41af7c95c718215210d3937a326f63f39f91800d8e803a8ea
MD5 ccfdf1cf72c7e7efe545ecf5f6828b99
BLAKE2b-256 29829c420cbad0af2c188d57b73914d1d58bcc198461b8347ed2e0a2b785b278

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3ffca9567d7caa1cb7ac8725e31774490e7fc971887fe288817720ace23a3129
MD5 4494259a07687621be94c98572668fba
BLAKE2b-256 845b7fd7630af333e1ac334796d7af0f637f251e4f54ca8c3f8a029de58483d7

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7b73caec6eb2abd763929fb80135462759abfb0857dd14918c09e30d88579b19
MD5 0957397de9b96f78338050db64e648ae
BLAKE2b-256 b2a0a32a5d86916ef15a337e3489b184e4aca96756f3821fdae8feaff286eafe

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 28daf68c01ed12942b837ec52688d1ea6fcc18fe1730da6c973116c2bb3296c1
MD5 30a85aa1da1269026e46d53b07063731
BLAKE2b-256 e882b9359b1b86cb2b7db8d49685ad673b49279e66b2018458284974f4b3bc33

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf9caf262511443445daa13bef060cbca0c15e7131829ee14d9472c7ff4cee4e
MD5 0603edf3a00e1cbde07e9e8ad39a7c40
BLAKE2b-256 a9713964b5c269ded4ee77cfd5801e0fec1f0d4b23d553a4ebb7166b79028bf7

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2521b89e4b39b42e513226f57cd30f37ee4d6ff997f6015d637f99a7cf1d2e18
MD5 c12d981fe9a07a24fb7376f37140ccd6
BLAKE2b-256 7207c91c3f78b64de2fa4d42d4ae21171fc340b18d828f6a9d4c9ffd48c2d45e

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 832704c43e36f67bcf48a1ae086dd9744bfc6b4e0043aff66cac21dcf0f86e2a
MD5 912b55adf3178b45e814eb62406824a7
BLAKE2b-256 d26134ac9033bb15296b698498fb2c23051ca84b8ac2fdb17781b0c3d3e48e89

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b682bb872d52c789c33897d1b7335d049fb7ae262c835ab5e12fa4f122ef2d7b
MD5 938d22dadb8ceb4f4045481e0b0cf1db
BLAKE2b-256 8324a804ce12d67a11848fca303b3ed1d9797c54228a4dbded827d119fac81fe

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_s390x.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 4b1a4a1368f0925535d729c5ed0514e3ff9c289588ee3784904545758b408ce6
MD5 3ddc8880a76e42dbd2875ac7249aa4ba
BLAKE2b-256 348d69903592c9467606d1a8785403d8e51cb365c3da8506dfcdeeb6862baa77

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 bff369aa727c5d820c43327b8581bb8398edfa0818260787a3da690ade45ef30
MD5 0364942cb24d076a1813d5c4b07298cb
BLAKE2b-256 71ad3df0adff263f26e56443fc2f29c59351c7bfbf9fa9a3e97cf7064be4566d

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 616f42ceb7e5a4975fe0ba57058c22c3e97758f8494a19ca161f19fc67b14df5
MD5 c8e4a1af9df8aeaff39e915cafc4c2c9
BLAKE2b-256 d55e09e5fa86815c2c318620a92c72affb97be129f146e1adc596617d21d00a2

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 450abe53e49f6775d067ef5735d64d0252398180b8c0747272bf602aa1fd2e07
MD5 033ee136c68c235fd9bc2cdb93bf76d2
BLAKE2b-256 72b617d122f1299b5d9ede1365c680511cfa40e049930f04fdb57ada0e6d292f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99c5fddb9ca2ca2b6db904bd1ae72e95490882b916fafffd4be0bc6a6b7b4ee4
MD5 d015ebe52bd58a6402e7dc5102093dc5
BLAKE2b-256 80ec7fb256c51b8af5fc3fb3750590c2e7478192d9bb306a7c7ab47e7215ea60

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 29f38bc14bff87ada061a15f5c1932c21a7d57de42f214d3443712723d735338
MD5 b41470798638a7efe7c75dc691295b3b
BLAKE2b-256 df6ce8064d94a6ae5e7322b5eb01ec1ed41dbe1bb323410fac13dbea4d43b1c9

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 005eb85ff7f0979384f4a2f2c1c003cc8e9443e2fe45aaac3ddb40bcb6d0fbe8
MD5 c18804da62baeb6122b061b417933338
BLAKE2b-256 46f564c2aaacb97987131f005dbf04f4ff9dc0531c8c886fd149bce735240aa7

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e3b20e83750fa460315f39c31ea9d3c1c8aedab3bf8a365343ff145f62932709
MD5 d4198310931618d79dc0890971c95b8e
BLAKE2b-256 444e48a1aca717c9f05f31ef925a329ded0f6287bb449f1a2c74109a7a09fbf6

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40d5821953eb7c1093908d873f4b4e00c7de6e73a04b1b3607ea9731694f0d2d
MD5 bb5596396b2f8b51a19ad630988db8fd
BLAKE2b-256 eb5f13da5eea651a1bc363f82efe1357a4c48f1be9cce838f877c83353f4d9bf

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 095400230b0b52709ff5b6d158e7cfd43d6d974edc6baeb90feac8189b3bfc09
MD5 73e72ce2072d6026d38e0b188a0b1f62
BLAKE2b-256 0c085b11051d912b35be5846b446a4049468964d2766d6993860fd1e01b94ae5

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4df14c4fb32ceb4d4aa8683d65ba010ff18e0cc0dacb1fca03c4e191b45ca974
MD5 c391623699ffdfe6b2b582cdac8c85ef
BLAKE2b-256 b9d4eb3294cee555ad212eeb08db6aaa0c34899ebef12469fe42de3575d0ad1f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 66ead3d1f2594a8ce665b2c5e87ddd6f4886ef2faded7cc0513eafc3543d654d
MD5 8d386c2ebfa377029d4277b39ad9b1fe
BLAKE2b-256 92680c97f3ff7c2ea5589a8e2808733186bb254cf1e1d3bfa50a7eb5ee4b20b6

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_s390x.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 42fad23b3d669d823262b081e88917aec0855e7de57ba7f717576a6f971405f4
MD5 61ffab4c74fa68c9e2f482a9ff546004
BLAKE2b-256 bcc841961f683cb961994a0c971f7472260cffe19b9ba7a788461f3fab0b6bf0

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5d99ae0b0c4346266f0953366a13779882ef3786242f906e5f6837765443bebf
MD5 6d5d13008c4cf4cca80f02aa0b006766
BLAKE2b-256 2e510820ac8ceb8499519fe3b051e5d502f96cd2be61500bd3999c371c5a7a45

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 de5251b7db70b630d21937eb4a9af4b03c0093b4f693e07d55cf66bbe382f5de
MD5 65d1f29519ab4e52c24ad8915a4dcc15
BLAKE2b-256 abc9a25b34a9e6f13328cb5d4e552b75ad147afec7fdae3796b69cf070eddef1

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 acd596fb15818daa5e6c110b77195b6b407e98cb10043cff409317476bd4f1ea
MD5 ba5b1ae7c473dea7aa66353f49cf1b01
BLAKE2b-256 39edcdeb366a5ee6207e8eba80939b71db97aeef63375bd9437b96a1a9d58c02

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 103e86129250819ac6a21e7d1eb50f92848cee155b6c83c748ba474dd224190f
MD5 8253c30cee3c942ba145675632961e12
BLAKE2b-256 76140fcd1d3d7a4f0ac5d8ec54c9251d21888d50f564fa887713e2052c5dfffa

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e017e6394fcc6fef53cc7d1609d97f13aca7804e73e54eea495feedee4f47acc
MD5 b983a7ac94c4c92d43d1057d87149c65
BLAKE2b-256 ce269dba4eba52a864e7a79675c8bba1efa10aa79764257b7e01009bc1c40943

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 99c2099622bf97f7f73ceddc270f2f9ca147c6602fbed695ff7a9a627db6685b
MD5 1a1d84bd67b097a9c15bd1ea7f985b84
BLAKE2b-256 2edba6c45a8b0a72911383f81bc7f6714e95874293368842538786347b210bc9

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c8b43cee4cf0124092b1ff743ccd7e797ef7d572d00ba3530a515552ede0a3b8
MD5 7fc1a8243d9ad4ae141e71b77c9a0f77
BLAKE2b-256 71cec09efbc23694d3a55f2f08a8133c9875984d2d5efb1ae5c018909c59a471

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be0fda4de8529467bbe74481e08f779ebc91fca88415c01ea435f405cf037147
MD5 d9784d18b53e16b111ded83484f8f980
BLAKE2b-256 a5848b30fa995f5a8523821c077df6bb09d2803da52c34a23e662c485be92ea9

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dd0f76a8ee915f57e1154360363433249864d03fbb1d88878781cea1e64a5f87
MD5 19eabee5bb9f4cb1ba97c091c4d6d7d9
BLAKE2b-256 308bf9f09df0d4185c9a221845d1978e91689d0002c1607fdac3b84c54bf134e

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2f0d6c8886240850da2cc9c87f28b5910adffd5d95644be35419bd642162fa3c
MD5 aa4c36aa438b914748f2f218a96338f2
BLAKE2b-256 6398082391ea7ef9aa402ae102c828d4e83b042dc5e6044a18bd2a3c19bedced

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f29789422fa581d5f11567033c01d20dcbd968ad711b820e4a619513a854a6e5
MD5 4a1c5186a543335527ba6495a281c8b3
BLAKE2b-256 57b4c3da34d01c389f6aebba3c00c103197159a585ac9a8d4e133c43fb0c9ab9

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_s390x.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9e8bdd2fa68f62d9ae8f03609307c2f6e9dd1ca18c1bfade15355051a7406779
MD5 d4da9b4704bee415684b43d7e9cf1798
BLAKE2b-256 2965130a1b1bc2c8da7b79a4757387b8dd5e2e6540a2e46c527bad75fe920769

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 2758302d602a3da803e244693bb392ae25ffe53c01801dd0b6c28585e06f5777
MD5 e246264de2bbf8cbf8e8eccd53e41ef6
BLAKE2b-256 6b8bb5c577559787b97be4a10e33f4dce20d80026f2ef209606587df0ab2f27d

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3f7942c82e1c4e883a7b059e42a33221e02537d5277491a14a7d7f1e81d3a11b
MD5 b4a668f5f2cf38a78a060f57e85498dd
BLAKE2b-256 fbfe09b6c8b3e4e8c0a31742c6cd894b2600be66a8f680325803b3eeb1e3807e

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f0d8810c7e284a01f828ea918557ed7cdbe6f87a2b94190fb71be155dce270c7
MD5 d6fb16218ee3c1257903d129ade8886f
BLAKE2b-256 c4501b61768bcf93cbed2530f9e0c181ef658ad1d6f53eeadb9bba1f7f0f1b81

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9461df34f695a91ce9a375352f4132eb1f1035f3ee762431bd2336e0526b18f9
MD5 dfe630dd57ab323351a5d328612e4db9
BLAKE2b-256 3b2f8d7f879d21a23e275a31c256f2b8015e65268a7449b2411704cb7c2cbe15

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 78384d34d22dcf17cdc9be487d111c22d38f20d36e5c482b43bb65f05ecd0a99
MD5 1d0b6eeb0f62a679bc5f2d93218708e0
BLAKE2b-256 599cfa493c5d90f7cdaec534bfbf568c192f50fc548796449795b7a446cbbadf

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 82cdb59602cbf85c067802c5cbaee05d9fa063165678043b3eff8f55f418ae51
MD5 b2999b195272e91e974a1a4675e8f810
BLAKE2b-256 53d6c7e1ec45e0ea2ba043ca0216f4d45ed20c9078abdf54b80fd0b690a69d77

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5f910322115df763c00e60903807b8016a3d6e067bc10191c79f7237853ab6fe
MD5 a6aed94631597b51e63f152f2e34ba67
BLAKE2b-256 eb11727d084123d331321f984904247133452f388e1270839b69e1b426b44602

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31ed070c3d97eefc977bd31e3843a1d4ed73ae74068512e4421243e011cc4dd0
MD5 1800e60b1af33db8de837537e8d78141
BLAKE2b-256 3f576553d11baa96abffcb6e114bebe947c9a8745d8b4992152776bd41273359

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6824fbc89bc17b58a96a8776673811e8131b8c82b2bf48329f633c070f2a7469
MD5 1fdc27079c380491509a2833f8e905d0
BLAKE2b-256 0a2deed98a35509d598ce8816fa1438d659f7d4559e62d77c4953b1ebb2dfd19

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 37224adfd889db657c8d220c44390b4de6816e12884930904a70147ed503ed98
MD5 4f1f0cf8f0b32345c3ce49f571575f9a
BLAKE2b-256 99fd81e010fc32ab304acb87a3d5b9fe530990e04f048d85ad23d24145874a57

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cf30170188274bac3c95341219a62ec8d153e2f315df5e548acd343e7847a69e
MD5 64f920f9842385f07efb541ee7fb117a
BLAKE2b-256 0a8226c9878474bcfde0e25d42c606ca940143d1a4a9263993b101ba95a0c856

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_s390x.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ s390x
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e51c27f9a9869a7e5478d25eac08f37f5a920ba931778e42065fb401606a4af5
MD5 1fbc594c5ee10faf465717ad98021757
BLAKE2b-256 bfba62ebb1f2d82c1333ce12ee75c9976b652000d086450ab9ebb84683f1501e

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_ppc64le.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ ppc64le
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 08857a8725665ff8e98f25255071e0c3450db7e758f90b2ce316824809433e1e
MD5 e47ef01b3f0cf60bc047a9402c0672dc
BLAKE2b-256 f3d4a82be0a425cef7e25c14ac5553928f2b17e02f18da3c63e208916efbe92c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6eafa6e7494810f2abb08ff7b44e4c85be0d742d0054ccf53c1b5fd75961e573
MD5 155309e6461f8402bf8eda660525ad7b
BLAKE2b-256 4b981fd774edf45de27b70a82013c435df09eadce616ff1fbea8d4bf1c48aadd

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 41da1aa383aa4636a009c07c1f56456a35fddb39a7f5a9c1f2cb2b77b239b45d
MD5 3b9b165fed1455919bd841eb77a066d5
BLAKE2b-256 c723fa137cfb25d60394373ada5fdb1a5f4da5a859e53192377a005a2014677c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a900bfb4e8728a2ec02ab0fec2d4796fd71f3bd3376f94f13cf9617bdd2a7164
MD5 73f05a1b880842eca51ca9917353e1ec
BLAKE2b-256 cdd683b34c2e1b7ef0c283611e27bfaacccb0298adadbf89973c81bd1ac72660

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 12ddd803118c3a01be0d7dd27f5e29d4a1c8cd3d17817ccbb61aceed8fd6c33c
MD5 66712bfbe9cc4229042131cf63cbfd39
BLAKE2b-256 b448bd470c8e7a1d7003082b9ff87061ea04510488f3007cbc62aec6615aa3cd

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 863db46d8e761b85ee56aa5c7a45f0ec69b72f11bb0daf286504b8b9d9b838a5
MD5 60897dfc64a61741c9d1ce896a218e7c
BLAKE2b-256 82338e85a691ae2e6087df755fa339321d392b803e5f6e5a3d6a39b827b985a8

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 94929e4055b6642b72ce288bf9bebfefcff2ff4d5dd1a9b4a7ba7048f2ace1e1
MD5 1c848bb51f0fd7c2245029d85b38a03b
BLAKE2b-256 3a130ba4206ce6687a3df0d050ef17eb27ee70f6859bba0368636959384bd52a

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20211208-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 795a9220c0ab0b424fbb8f575e9e0384382d7a8f8543e32996917dac7026a790
MD5 1656b51e2965dcf7dbfb3a2962c4a38a
BLAKE2b-256 00b78bc015d01954fdb0c7016866c83acd953f90d87af38c66a9945a1f5db6ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page