Skip to main content

ncnn is a high-performance neural network inference framework optimized for the mobile platform

Project description

ncnn

License download codecov Language grade: C/C++

ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployment and uses on mobile phones from the beginning of design. ncnn does not have third party dependencies. It is cross-platform, and runs faster than all known open source frameworks on mobile phone cpu. Developers can easily deploy deep learning algorithm models to the mobile platform by using efficient ncnn implementation, create intelligent APPs, and bring the artificial intelligence to your fingertips. ncnn is currently being used in many Tencent applications, such as QQ, Qzone, WeChat, Pitu and so on.

ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,天天P图等。


技术交流QQ群:637093648(超多大佬) 答案:卷卷卷卷卷 (已满)

Pocky QQ群(MLIR YES!): 677104663(超多大佬) 答案:multi-level intermediate representation

Telegram Group https://t.me/ncnnyes

Discord Channel https://discord.gg/YRsxgmF


Current building status matrix

System CPU (32bit) CPU (64bit) GPU (32bit) GPU (64bit)
Linux (GCC) Build Status Build Status Build Status
Linux (Clang) Build Status Build Status Build Status
Linux (ARM) Build Status Build Status
Linux (MIPS) Build Status Build Status
Linux (RISC-V) Build Status
Linux (LoongArch) Build Status
Windows Build Status Build Status Build Status
Windows (ARM) Build Status Build Status
macOS Build Status Build Status
macOS (ARM) Build Status Build Status
Android Build Status Build Status Build Status Build Status
Android-x86 Build Status Build Status Build Status Build Status
iOS Build Status Build Status Build Status
iOS Simulator Build Status Build Status
WebAssembly Build Status
RISC-V GCC/Newlib Build Status Build Status

Support most commonly used CNN network

支持大部分常用的 CNN 网络


HowTo

how to build ncnn library on Linux / Windows / macOS / Raspberry Pi3 / Android / NVIDIA Jetson / iOS / WebAssembly / AllWinner D1 / Loongson 2K1000

download prebuild binary package for android and ios

use ncnn with alexnet with detailed steps, recommended for beginners :)

ncnn 组件使用指北 alexnet 附带详细步骤,新人强烈推荐 :)

use netron for ncnn model visualization

out-of-the-box web model conversion

ncnn low-level operation api

ncnn param and model file spec

ncnn operation param weight table

how to implement custom layer step by step


FAQ

ncnn throw error

ncnn produce wrong result

ncnn vulkan


Features

  • Supports convolutional neural networks, supports multiple input and multi-branch structure, can calculate part of the branch
  • No third-party library dependencies, does not rely on BLAS / NNPACK or any other computing framework
  • Pure C++ implementation, cross-platform, supports android, ios and so on
  • ARM NEON assembly level of careful optimization, calculation speed is extremely high
  • Sophisticated memory management and data structure design, very low memory footprint
  • Supports multi-core parallel computing acceleration, ARM big.LITTLE cpu scheduling optimization
  • Supports GPU acceleration via the next-generation low-overhead vulkan api
  • Extensible model design, supports 8bit quantization and half-precision floating point storage, can import caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) models
  • Support direct memory zero copy reference load network model
  • Can be registered with custom layer implementation and extended
  • Well, it is strong, not afraid of being stuffed with 卷 QvQ

功能概述

  • 支持卷积神经网络,支持多输入和多分支结构,可计算部分分支
  • 无任何第三方库依赖,不依赖 BLAS/NNPACK 等计算框架
  • 纯 C++ 实现,跨平台,支持 android ios 等
  • ARM NEON 汇编级良心优化,计算速度极快
  • 精细的内存管理和数据结构设计,内存占用极低
  • 支持多核并行计算加速,ARM big.LITTLE cpu 调度优化
  • 支持基于全新低消耗的 vulkan api GPU 加速
  • 可扩展的模型设计,支持 8bit 量化 和半精度浮点存储,可导入 caffe/pytorch/mxnet/onnx/darknet/keras/tensorflow(mlir) 模型
  • 支持直接内存零拷贝引用加载网络模型
  • 可注册自定义层实现并扩展
  • 恩,很强就是了,不怕被塞卷 QvQ

supported platform matrix

  • ✅ = known work and runs fast with good optimization
  • ✔️ = known work, but speed may not be fast enough
  • ❔ = shall work, not confirmed
  • / = not applied
Windows Linux Android macOS iOS
intel-cpu ✔️ ✔️ ✔️ /
intel-gpu ✔️ ✔️ /
amd-cpu ✔️ ✔️ ✔️ /
amd-gpu ✔️ ✔️ /
nvidia-gpu ✔️ ✔️ /
qcom-cpu ✔️ / /
qcom-gpu ✔️ ✔️ / /
arm-cpu / /
arm-gpu ✔️ / /
apple-cpu / / / ✔️
apple-gpu / / / ✔️ ✔️

Example project


License

BSD 3 Clause

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncnn-1.0.20220701.tar.gz (38.7 kB view details)

Uploaded Source

Built Distributions

ncnn-1.0.20220701-pp39-pypy39_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220701-pp38-pypy38_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220701-pp37-pypy37_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220701-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

ncnn-1.0.20220701-cp310-cp310-win32.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86

ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (725.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (914.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220701-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

ncnn-1.0.20220701-cp39-cp39-win32.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86

ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (725.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (914.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220701-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

ncnn-1.0.20220701-cp38-cp38-win32.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86

ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_ppc64le.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (724.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (913.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220701-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

ncnn-1.0.20220701-cp37-cp37m-win32.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86

ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (734.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (924.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

ncnn-1.0.20220701-cp36-cp36m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

ncnn-1.0.20220701-cp36-cp36m-win32.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86

ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_s390x.whl (1.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ s390x

ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_ppc64le.whl (1.5 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ppc64le

ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_i686.whl (3.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (734.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (923.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file ncnn-1.0.20220701.tar.gz.

File metadata

  • Download URL: ncnn-1.0.20220701.tar.gz
  • Upload date:
  • Size: 38.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220701.tar.gz
Algorithm Hash digest
SHA256 1dde8b0c3066badc1a5367f58f3af3eafbe68edd5e50f7ac70228ecd38210d85
MD5 4d3c83ffc2eaefa0bb21bed49cddf57e
BLAKE2b-256 20988e46767ec120bd61d5bdbe85f26a451dbb5a4978541ad1881e38bde822aa

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0ab446583634a2f8f691debe0a47aa6547074ce79b11253de226a2db2d0019bc
MD5 2e8e9df8cafbcb2c2742cc4aea11c9d3
BLAKE2b-256 65d73419228fd454681b9d678581925c5df69662610907b440b91a56127b8166

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60c586dbd805c585d6d174c4400fce309769fb8cf96cef5867399dfb3b9b4c11
MD5 92f28128685ae21ac45b546a508f4b5a
BLAKE2b-256 ff2e0534be1818ecb169d91f76077db56dd16fa0d50fadb1e5957eefeba31e19

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ab4b3712fad8355b00a1f6b8554520f0483d582b2adc7eb82f4c2f08fc0791f9
MD5 25f177a26f53cc8a5acd451108b0e944
BLAKE2b-256 f5721b2ffa66bb3081f758da482212e873109e7ebb0ae6e438baa65f52c39443

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6794d53bdc12f4894925b51db66fa0856c5a945b903b76cae6c81c94ef8f4b69
MD5 eb224a6af39aa6333ed4c6263545e468
BLAKE2b-256 2d45ecb46726a8a90d07c4f3f481f29d64d67337207dc4f8685a0a7af1e93145

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f673dc3e63810f8c7f942a44b1ee7adff2f5a5470edadfe27ea82feea06b766a
MD5 5b5db6344f772fc10f9a52d96949ed9d
BLAKE2b-256 0f3e759953d8f5f7c02ec143d4148fe41a613e8b1cfe9e6976b4495b6a7a2856

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87b3aac9fbc97f23fb225b474f4d68a0db93e7cc3524852973f02b745ac7784d
MD5 8efe85c538068a22ef3b295d8c7d6a43
BLAKE2b-256 137e5eb0e60b6ac107cf8e2c5186ed4d9e7a4dca4112fb19b8eaf2c5ed85a58f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4c1672aa93ee97752892b93fe2c512c720ade7eb49ab684f880f3b01ed13af8
MD5 ceafd979fbeac0ea8482c16d958ecf4f
BLAKE2b-256 8e1ffcfd058d9adeac55dd2992f6241d1a604dca9ac47e2da0ca9c55510079a2

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ec6ce8b23ca92bccaf38e5a09741aca7409dc0141d25a9653d34c8d32d8116c7
MD5 9a6e59c6ebd9aba81d5d62e4064ad671
BLAKE2b-256 fbc14c77a54d627a11b3624b6ba0fb06bf84ecff277edf68505367971eed3ace

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3bdd7b2738a759893e2d274cdac24c5fb2784dd41f0605c3177022100e293699
MD5 1538c38c2172079d08f9be9e8443fb28
BLAKE2b-256 f609a9b3172ce9aca1ed7bdeb3d5086c7777d362c5a7c0bc6578a42cf4710669

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a60992448f42ec2967155a5b35622b476320a2d86e60ba7259405f18ecd79a53
MD5 da11a0c227488ad421106bc8a6fb7a3b
BLAKE2b-256 bdbc7eb2c1e85f880564daea4f02369df4f849cf7d143d5e2c201f8365f30d8e

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 54f32ca0635be6297ae277fb0d3e5ceefd92f8baf44ffec1b2ee0dbdee19cb2c
MD5 68a43c4dce0ab88f17ff47d65869f6d3
BLAKE2b-256 3b82ee319c587cf6696dcb1773290c2834ef94b93ee16c1b40b05c5a32006256

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d1dfaec32565d96d98df4ae432b03b38cb0b6831574088776c9572d764d313f
MD5 9a77aec36529d312f03bc35640d85ac9
BLAKE2b-256 ce4162cb3457fdbc87b2f625e9466a3e1bee31ea09db4a3b1b88958c1ee96ba7

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 74127fdd34f82d9a1959726f07dadaf0ef36541aca1d8a53b6f49331dd8b3211
MD5 798db0064706fab132b6d26408c1e0ed
BLAKE2b-256 2f29557759a10ae3896d533584fcf1b0c7faa9f6296a5cff866a4d1764e1413d

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e23daae8aee7f907ab69b507bb072de3c97d382612d45a175ae18b5eba378792
MD5 46ac0352d7a15aa3afa03454ce0843f6
BLAKE2b-256 92b5a3d732e5a9713b47ceb16a3d2a4357d904789fd47f693cea7dbd64adaf8b

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e64172b6e6cd1b488af3d63662723c63bb736a0ad098a76df9ee0562fdd90e33
MD5 bd7fad463285683ffb7fd80090048be7
BLAKE2b-256 da31e716d9898ed139cc7c6872874997aceb39c964d7a4b6157bdd168c9c8439

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 d276bc7a0792506f7ffb0b25a4055a732a9c6cdbddca1e4eaeb83165f6bead84
MD5 a562240f01b919c6851ce19b2d784320
BLAKE2b-256 b8d52d2e9ccbcb2378efba9d70818ff5bf417db019cca8cac93e9f7ba06dab34

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 05b7438d07616f2cdce6478fcc960a1a25d319abf8accab1ce4927e70c896f94
MD5 51bc4e220863da9c717275a31cbd6fd2
BLAKE2b-256 1ea9bd2765c86a11cfd7a9f5ad1c428fc8b858fd1c01b196999971277bd518e7

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e758c82973d574601479cb39c55691a81deb2709cdc1867f0cdba4ada67c7200
MD5 4632f27d8555e4de20d786f15f19dd41
BLAKE2b-256 b038cdd60a41b09604ecec2a17e5f07e966db9f12349eb24f753d9f7b902cbd3

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f6ec6397fa4aa642adf9e8121fbfd4d09bbd635567468342feaf482c85bf104b
MD5 040eee34a4410b4e07c65edcea08e476
BLAKE2b-256 66c1bcda17b888a26ae5d37f845eb735c396f095fd16fe1e90356d2728ee82cd

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76d4b119dd6bd860d8a6021294f0c641a1913760b8d344463932bf5f6b9068f7
MD5 299380356e93f7f1d12ba106c8f09245
BLAKE2b-256 40498141faefb4ad572d8c718a0ac4946363a9fad0369cf4209acbbe299ea3ff

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 11c37582c87eba3cabfc910d9d368fe84710dd5144e41574c782f3342fe605a5
MD5 f593e677c75ecb40fcd1a0bd2b33a9f3
BLAKE2b-256 4a23d01ec81cfb64b55d8791850b40fcfafaeca061e51ab749fa3f260b282dbe

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3833bcb3dd87cd7805372d9b415f8167968938791687a444d4d701654d64cc79
MD5 c01d392ab29306e4cf4dd30888e9d498
BLAKE2b-256 22610ae107f262ff49af7a28fea62c95fa9062656b4e405f4be7a585a4e27fc6

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 963af2f156654a1dd744fadb23be819abb63054347d352872b6aedbf56187e6e
MD5 d31379c60bb90d65d04088a42cadf43a
BLAKE2b-256 a195c8f5ba6832472832c4310bc9973abf06bd3ab9b99f9038da21309c01ae59

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83eeb9c0bf8cb2581a4e61e4ccbd4144b1cbca336d15d760c2c3e247fa799d98
MD5 f6800b2f9e67ff7ebe7c3e9d74044284
BLAKE2b-256 88e14999634be5ff00ea819c5f1feeb4e1bc27882aecf37cc2379e562a5b28d0

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3d32a11e0526f7bd99eefda6c46b5aeba2208652b36d7f07188540eaafed5852
MD5 5bc79dd2a6ccb5a69a54fb5caf2a0dbb
BLAKE2b-256 0bee47a10d46180b09456c3bc65d6cfac302b6d90414a4acf17698a0ac1781b6

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220701-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f1e3c5b5270a161ae1e3e54c8199e13eaa14ef8188ddd36c6aff5ffd8090cd83
MD5 f7ac81fba6b12ea3fcadfa3b5edf1e4a
BLAKE2b-256 dfa39ac72722771e954dac1b458dbf53ac17dba9d8721f5b8b97a0685abb63c1

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 34e7e05abaab1cf32dc6f9c97c577243fabee66c8038b76c26a348d5c8c50a5c
MD5 e7046a117ba75cdc318a2a5e5ffdac91
BLAKE2b-256 9a20f8714c65e501c4bfe7743b6f4c4965aa50289fced4faf50ac95532d5aa84

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ce7d324b505779177f4b9d4cedf056369bd8c41bd795813defc4ded033bc70ec
MD5 4bebe24555833b0603304f76aae66e85
BLAKE2b-256 abcceb21fb0652af8b1bca59800488964f0a8b6650c6aed689356895aa20e992

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 05492a834ba01d3ff68b54d3c83a0b7c928ba853a988987673a0d58f5c6ece32
MD5 cc18ce86bd910a494a42320d94bd27f5
BLAKE2b-256 65927cb764b5512aa01452c73fdfcf012b4a29d9e2d0c288ee818df5209624a0

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ac031c624c9f7f322463bbbc0bb3b79f0538b6bdbf829705e3ffee5a9052800a
MD5 520e804cdca0ffee23e5bbd237e0d0df
BLAKE2b-256 bfd1648c890bf784bb488480464f402b37665f3141c9dfff42fcabb7f6de3ef3

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bc5c16ca4d37fcf32d00c60c82f6bcbca43ea01aac4c4db0c5a2dab39f02b5a4
MD5 bedd82c90a92bd8f1007f58ff957c1f1
BLAKE2b-256 92d32fac9e0501f9468993262219512c7b17d8699b688b5c0d6adc61d9bd87c3

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95865bdc63dd03985db677fe7071c7d9a7b5a3120726693b279f71790875f167
MD5 6b308071d305633fab21dceb9fd618e0
BLAKE2b-256 a82988f36c608de9269bf5a91f8a5b4e2d1e1fad31bfcac3ebcd48048b7529da

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 635dcd0c445185c165dbc05becbe932b4225f74ae36c92e32e7cacff07cb719d
MD5 c90f58f10d8b5c760e09297460ced3cf
BLAKE2b-256 fbf96e638afdd437996d7e960052981522d8675ae160e72f18cde4302ff32740

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bd7d2b86b6d8fbc67e11fbef5b59512df8d8e7eefbfc634ef34a6203d79e435d
MD5 f049f61a8bba845a086613c820517728
BLAKE2b-256 d1e11cb776f8ec531413c32b1cee9f815088fed0f0111b1beee27dbfa90c137b

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 27c88abb738cb8ad71256aa858c5720505d8e191da89aed6d5f0df0c6dd6e83d
MD5 ec99806eb60ed358497c6d68f3a3ef3a
BLAKE2b-256 50b96b2963e9288ff646bb15532673f22c29ba27c8ae8104123e8be0c4ee0f82

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6958f462bc09c274c8255b53f6dc84e49c10b6d2bb3320e65ed667e114596db3
MD5 c6d86b615862f8859c61a21e57326501
BLAKE2b-256 a1543db3b41a74023b870db5099d62639ed0cf6d84f1cbac8232ef7ac0b9a79f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5b583d3ef612e670dc5769856a136bfa217b098e1b9cd07b8b2e4577771319f8
MD5 f942a1df30989e92124b98955061485b
BLAKE2b-256 9992f690b236e10ea8e483dec5c21eb00b287db923e7294a35bfc9cc19230d75

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220701-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 afc9ed57b16af41b66a05cee8e86a3e6763ad55ebf43d889cacc861623c8da36
MD5 63b21bf2efab22282efebc4f182fb148
BLAKE2b-256 fc018216a6bdc45e00fe065046a7d91658215143dc3308d2eb55bcf508ddc658

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 90e28ff75311c580e0a064cdc8e319fa4df5ac41db3704b0fbc5772a261cc900
MD5 6c00f427d67cbf2a48ae20a63a8497b1
BLAKE2b-256 5e2bf9e43afed94c6f7c8d9348afc3e2c09f833f032890e246eebea6526c5e30

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 0a71200cdcab5c8566724487329a2732890e0414b5a8bd91cd4f7163119d0e83
MD5 dc9c80e15ef7829be922c12b4a0b32db
BLAKE2b-256 688a974561ab054fb379321630248b4f057d59404c76a1c06c3122a93c487d56

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 d83d980a6e7657835fade7b08c5e6442846aec4dbd46e629c06aae99ef9bb61f
MD5 888b0896448d0d34a2bc7e11e1356be2
BLAKE2b-256 1e1397ab8a79e08b5b56d787ce63a6c349d930ba06e7231cbf4a1ec51af01c4a

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a9f09a9a3e6fbdade58d0db7a487de30c6bae13af8f9e9e806465496b04277a7
MD5 4c23d6a636bc0febedbaf6fd4f3d83a9
BLAKE2b-256 d8caf0d6861e73b85b27b40ee142840d03203df7bcf42e53b45ba3764b18274c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 46db2bf348fff1ed0577de126745a8205822ce566b1eeed3f1121c3262640714
MD5 cc134fe611f118d93724995fc40e4da6
BLAKE2b-256 34564ab0389b73a0df54293f712280434055bc4d313f2da79c9f7be9f05fc417

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80737878d605e9dcc6a4c0c8d956b1804c1c2c2b0ed61ea21c694160d8f9b97c
MD5 86fdfa2a0499ded4d2978d41eafd13e3
BLAKE2b-256 0b00f882f005e7aebdb3d24466a4913a60dc64e8874c75cfd27f7cd2951868e5

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e3a9037daacf744965d9df9695804bf26bf6b57c637c84f119a8ee1048ae24fb
MD5 207079e4a8591fa21a4a551f58a380f1
BLAKE2b-256 8302adb9ede771f68fb0c6e195639f87c0e4e71ae3212f0cf0251d69f4c8f1dc

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2db323f54d64b247789368c7719d6b9b533d75a07aa9c5b5c34a4b061c3e1631
MD5 d96f9165755dbbeda96b53d625710277
BLAKE2b-256 b152d84c4c6884ad96a45316909a1afe1b7ae68eda8a4d500fd8f40c6f76eb1a

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d27535d5a72dcb152350e01441c78ae677b35d1dbe930c9922c6a6e38519dc69
MD5 dc476563807af172df7ab01839fb6a92
BLAKE2b-256 70477f73a514b0daa39856e10fad1e130d0fb3404eea13fb383ba90b52578ba4

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c39ce6ced46ec34d6aa29c0dc1bbccce17a5c92baa4b3fa08474cc9b53b2650d
MD5 dfe0ee8dfdac50c9d843721d9a98b641
BLAKE2b-256 2ba558121d7e57959cef4bf4f5bc8591c5ca3e5e9ff28ee55f0118aed1d8c074

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 90fa1ff4f4390dab3fc3f383986d17a2e450168eef127537956ba3802b5dd597
MD5 6baf16fcf23bd352d920c77de1ee62f5
BLAKE2b-256 78c45ee24f27d337e32f081632daaa7bfe7c8d29b1574f45fbdf2bdc165fbe1b

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220701-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dda4f25e5e0949f6d974917b934846ce33a78efc7a2ec1c209582d01079171f3
MD5 0ee99a5fd322274759b59be845927e13
BLAKE2b-256 deb3bca091541f1087740f0e65471aef8baa51bb1747fcea1c8451e8113a5d45

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c85f851b01f6ce4b66793ac09e1e411c4f079d18e7cd56eada7c680f9109842a
MD5 0953c8b8830f34862688eb956d7e4b3b
BLAKE2b-256 481fceed8611c7e8b65c43dd94663fd1e3f484a77dfd5a1c0f894b15ca7a1934

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 28d72fddaa66bb36eacbb86a507c8ab587d7bbb0396998940df7aebd1d1efe08
MD5 41f8fe11d4ef9fa0f4b35ede643d8b7e
BLAKE2b-256 0a73f8da4d9a044c9f5e6debb37217516b0cbeb5016f151b3320fb9f3820bc86

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b710943fbf228360d71f0c7af98403600f544bacb377988233fdaeadae862668
MD5 8c75f452d5091140fc41112a9797e191
BLAKE2b-256 83a124ba5c74d7c3fc797ec3a50174913dfb93c7be4926f784e68f07b5d23907

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 52f577211b68f96567b613620fe3f3292e91aa9e5b1550d374392675fc58c1c6
MD5 34dc639e59a4e7ad8de77200ebb164a7
BLAKE2b-256 f5c6de4d32f96adfe6b669203a6a9e7708313b4e0e4f11ae2d2dee5b9c842fec

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 158d46b29c5071f8499b8a5816440a3ed4961fb52a4f2df487d6da219efa09f0
MD5 c7b4c533b562249ceb37272da9e20492
BLAKE2b-256 e1b4541a1525e64afedda593cee8d4081bbb62444a90b9fa13341f35e0c279db

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45f916df86ee046697c7fbc8308e730cff6fa068b889b0f1277896e8d79d78e4
MD5 2ede6d13102ca2f021b55413f111ff73
BLAKE2b-256 8f32c8b295b268f6fec974dd2b183ed053f87884cb4882c3faf5682e682b669b

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4e29bc8f8e925c53e15b925c3e2ad9aea56d10c60f6303926d129d37bd368c89
MD5 3f14a164c4eb23779fe95b0a153580ec
BLAKE2b-256 2bd34e086d4bcb7bbc3cd96256d7a4c91b4db60b4d08f530df41861b66aad359

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d43d31807f301903d3035b8c9f923a6341656ea1c082adce65f6d578d91860b1
MD5 afc2fc55404ad9c1683913d24f7b5edc
BLAKE2b-256 755056d35c37ddaef38533ad63400fd63958c46d08735e4d113334e5db2d9e93

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76064ea567a3a46e54eeaf5f8e591c99e3964bc476398ac254fe82f9ec8e618a
MD5 2774d6775bd56dbaf69989440aea3df4
BLAKE2b-256 90e0f7f5decaf7c215e2b42b33b34af7db0400b9345127576b6956cf2797e297

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0c24a7385ab084995e972be85eed1cb092e51adea06264392c114ff34adda2e
MD5 a074a1599afc049599b2f5e0b1d80251
BLAKE2b-256 55f22b792268ccb1a901919264cb72324a0df8039f803d9d522b6f4ed9c7db8f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7b74537e02c074a3d2fc3cb823fcebf4b85a0329f4669b177c99c601c182a555
MD5 7c48d49f25313f94932f83868b0c98a3
BLAKE2b-256 27fb3806047d94875e02c8f88d0e28c6d8c0cc8dc3fdd4cb1068b9a698877b97

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-win32.whl.

File metadata

  • Download URL: ncnn-1.0.20220701-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c048bebceae3b28362ff1ce2e135cb441f3a953b86c1e2620a1509bfa6ca897c
MD5 0fb67ab15d5d429f4e8c4036bc38a1bc
BLAKE2b-256 24a711f8735d2aa6695998a8e8e62565cb75bd1274b86a3efa330d86ecec3ded

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 487577a4d7aa4b3760f5597d7477dde7c3a1dbdec411ac99f889d1940535d7e0
MD5 858b70b091cc171dc3d1f7483de3157f
BLAKE2b-256 36c41a249a5ee4927625368589df109c16dbfbda4a9c2c49a173742790c47f7c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 8341136f24146deb70cd7a198b444577e29939a7d2aa1c4d9e53f091a265b776
MD5 385823a50c984d839ad7f90991eb1873
BLAKE2b-256 a5efbf088e0f5c6a188739a31c4217e2d7a9c26717bb12744dbc0e5f301435f5

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 6c6371ccb506fb7ecd5922bb70103eb8f0ff161f40c2dd960c58a9d8401630e2
MD5 bc7e1e27b5b3ac861da2347198fcfb4e
BLAKE2b-256 1101da2c4e3bfd4dfb7ba2567128b3f1b48a23328753f66abe4b685ff97e309c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 27d534150932fbca53433fb7a6974fb4d376b3a642f5392b6532f1dc8c05a33a
MD5 950caee7166214bc6ad8f2dd15b339c7
BLAKE2b-256 3d790e233c352c9b63d0ce402e4738d6fd4d74ad75054d939f717f8d6dbf3125

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 36ec8ad53f39fb4450fdb26918d59e3a40da91b0348030d937e754d24390c1fa
MD5 969c876d95044d49726e72fe46e0956d
BLAKE2b-256 a41f29d81ec1032c3330d25daa4265f3600635ea690c8e0ac62d611ef83cde0f

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1db2462148ed0b327a26d883fdcda6d1681e2f19d9a221c442f520d056986b9d
MD5 917cec7eb1b4b03a5c9ae31bb6e14294
BLAKE2b-256 9962f1f46cb69390fa4d9f1b4d513ef93fb8e982cad22e4ae68acbe8e39801a0

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f1842e1e0d68515918e86ae9cb92f2ab8f850cde2ad7d448157f3750ba41c16e
MD5 c84c9659fe321f6293c96d8190eff102
BLAKE2b-256 0f3791c02e31aebe919b05c08b6b44cea08ca920a3d59d4b8ca0b6450474131d

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ba5e413fa670b326a80fe33b8bfb7533b4cacc3dab8504fb6613c2617ef48983
MD5 8647b645e2259d07935f5d9189683386
BLAKE2b-256 3a46546ea6b873392dd0d4788812c964c9cf06da0b2ae6fdbc6268feb3b1a98c

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bc02ece4f10fbd9ae359b548390f1cee2facf5c0729d48071d3d76b7bd0b6d3f
MD5 194aedfbae2dafdde30fd883a0c3de75
BLAKE2b-256 c16be5525cc6b14260e03813b97a6456fd18cafdd4a83f1329e47d2b01e8b8bc

See more details on using hashes here.

File details

Details for the file ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ncnn-1.0.20220701-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 528a0eacb68fa7a7ad4882afca98bbf3e279143c8599ec9c970c80c3649fbbcd
MD5 f152d01558c68cd5fe88705452547d33
BLAKE2b-256 d65cbf77caaafe57a4bade04dd285e0ec319c76c23e2d8ba8f90ba4595ed4fde

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page