Skip to main content

No project description provided

Project description

NCUT

🌐Documentation | 🤗HuggingFace Demo

NCUT: Nyström Normalized Cut

Normalized Cut, aka. spectral clustering, is a graphical method to analyze data grouping in the affinity eigenvector space. It has been widely used for unsupervised segmentation in the 2000s.

Nyström Normalized Cut, is a new approximation algorithm developed for large-scale graph cuts, a large-graph of million nodes can be processed in under 10s (cpu) or 2s (gpu).


Installation

1. Install PyTorch

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

2. Install ncut-pytorch

pip install ncut-pytorch

Trouble Shooting

In case of pip install failed, please try install the build dependencies

Option A:

sudo apt-get update && sudo apt-get install build-essential cargo rustc -y

Option B:

conda install rust -c conda-forge

Option C:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh && . "$HOME/.cargo/env"

Quick Start

Minimal example on how to run NCUT:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d

model_features = torch.rand(20, 64, 64, 768)  # (B, H, W, C)

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

Load Feature Extractor Model

Any backbone model works as plug-in feature extractor. We have implemented some backbone models, here is a list of available models:

from ncut_pytorch.backbone import list_models
print(list_models())
[
  'SAM2(sam2_hiera_t)', 'SAM2(sam2_hiera_s)', 'SAM2(sam2_hiera_b+)', 'SAM2(sam2_hiera_l)', 
  'SAM(sam_vit_b)', 'SAM(sam_vit_l)', 'SAM(sam_vit_h)', 'MobileSAM(TinyViT)', 
  'DiNOv2reg(dinov2_vits14_reg)', 'DiNOv2reg(dinov2_vitb14_reg)', 'DiNOv2reg(dinov2_vitl14_reg)', 'DiNOv2reg(dinov2_vitg14_reg)', 
  'DiNOv2(dinov2_vits14)', 'DiNOv2(dinov2_vitb14)', 'DiNOv2(dinov2_vitl14)', 'DiNOv2(dinov2_vitg14)', 
  'DiNO(dino_vits8_896)', 'DiNO(dino_vitb8_896)', 'DiNO(dino_vits8_672)', 'DiNO(dino_vitb8_672)', 'DiNO(dino_vits8_448)', 'DiNO(dino_vitb8_448)', 'DiNO(dino_vits16_448)', 'DiNO(dino_vitb16_448)',
  'Diffusion(stabilityai/stable-diffusion-2)', 'Diffusion(CompVis/stable-diffusion-v1-4)', 'Diffusion(stabilityai/stable-diffusion-3-medium-diffusers)',
  'CLIP(ViT-B-16/openai)', 'CLIP(ViT-L-14/openai)', 'CLIP(ViT-H-14/openai)', 'CLIP(ViT-B-16/laion2b_s34b_b88k)', 
  'CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)', 'CLIP(convnext_large_d_320/laion2b_s29b_b131k_ft_soup)', 'CLIP(convnext_xxlarge/laion2b_s34b_b82k_augreg_soup)', 
  'CLIP(eva02_base_patch14_448/mim_in22k_ft_in1k)', "CLIP(eva02_large_patch14_448/mim_m38m_ft_in22k_in1k)",
  'MAE(vit_base)', 'MAE(vit_large)', 'MAE(vit_huge)', 
  'ImageNet(vit_base)'
]

Image model example:

import torch
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone import load_model, extract_features

model = load_model(model_name="SAM(sam_vit_b)")
images = torch.rand(20, 3, 1024, 1024)
model_features = extract_features(images, model, node_type='attn', layer=6)
# model_features = model(images)['attn'][6]  # this also works

inp = model_features.reshape(-1, 768)  # flatten
eigvectors, eigvalues = NCUT(num_eig=100, device='cuda:0').fit_transform(inp)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')

eigvectors = eigvectors.reshape(20, 64, 64, 100)  # (B, H, W, num_eig)
tsne_rgb = tsne_rgb.reshape(20, 64, 64, 3)  # (B, H, W, 3)

Text model example:

import os
from ncut_pytorch import NCUT, rgb_from_tsne_3d
from ncut_pytorch.backbone_text import load_text_model

os.environ['HF_ACCESS_TOKEN'] = "your_huggingface_token"
llama = load_text_model("meta-llama/Meta-Llama-3.1-8B").cuda()
output_dict = llama("The quick white fox jumps over the lazy cat.")

model_features = output_dict['block'][31].squeeze(0)  # 32nd block output
token_texts = output_dict['token_texts']
eigvectors, eigvalues = NCUT(num_eig=5, device='cuda:0').fit_transform(model_features)
tsne_x3d, tsne_rgb = rgb_from_tsne_3d(eigvectors, device='cuda:0')
# eigvectors.shape[0] == tsne_rgb.shape[0] == len(token_texts)

paper in prep, Yang 2024

AlignedCut: Visual Concepts Discovery on Brain-Guided Universal Feature Space, Huzheng Yang, James Gee*, Jianbo Shi*,2024

Normalized Cuts and Image Segmentation, Jianbo Shi and Jitendra Malik, 2000

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ncut_pytorch-1.6.6.tar.gz (32.0 kB view details)

Uploaded Source

Built Distribution

ncut_pytorch-1.6.6-py3-none-any.whl (31.3 kB view details)

Uploaded Python 3

File details

Details for the file ncut_pytorch-1.6.6.tar.gz.

File metadata

  • Download URL: ncut_pytorch-1.6.6.tar.gz
  • Upload date:
  • Size: 32.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.16

File hashes

Hashes for ncut_pytorch-1.6.6.tar.gz
Algorithm Hash digest
SHA256 768aded024a5b07c19c6b480fca4e8ea387387f33013b045d8fcace7a76dc002
MD5 cbeff424ad5b7eb3b2ab04925de9c735
BLAKE2b-256 4d1c291014df5d7505eb94122828cf85d7ba837b1f4df5a9bdf377e55c62beb9

See more details on using hashes here.

File details

Details for the file ncut_pytorch-1.6.6-py3-none-any.whl.

File metadata

  • Download URL: ncut_pytorch-1.6.6-py3-none-any.whl
  • Upload date:
  • Size: 31.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.16

File hashes

Hashes for ncut_pytorch-1.6.6-py3-none-any.whl
Algorithm Hash digest
SHA256 0227387584b0bf437bfc555c4ac0a61f4a14745bf3ad1cea2c91a7a2e70ea3d8
MD5 cd83bf7558576f99367a5756af299c48
BLAKE2b-256 25b1b017beb5fb3705eee549020877098effca783163d72112ac74625d42e384

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page