Skip to main content

PyNetsPresso

Project description

PyNetsPresso




Use PyNetsPresso for a seamless model optimization process. PyNetsPresso resolves AI-related constraints in business use cases and enables cost-efficiency and enhanced performance by removing the requirement for high-spec servers and network connectivity and preventing high latency and personal data breaches.

The PyNetsPresso is a python interface with the NetsPresso web application and REST API.

Easily compress various models with our resources. Please browse the Docs for details, and join our Discussion Forum for providing feedback or sharing your use cases.

To get started with the PyNetsPresso, you will need to sign up either at NetsPresso or PyNetsPresso.



Steps Types Description
Train
(Model Zoo)
Image Classification PyTorch-CIFAR-Models
Object Detection YOLOX
YOLOv5
Semantic Segmentation PIDNet
Pose Estimation YOLOv8
Build and train models.
Compress np.compressor Compress and optimize the user’s pre-trained model.
Convert np.launcher Convert AI models to run efficiently on the desired hardware and provide easy installation for seamless usage of the converted AI models.

Installation

There are two ways you can install the PyNetsPresso: using pip or manually through our project GitHub repository.

To install this package, please use Python 3.8 or higher.

From PyPI (Recommended)

pip install netspresso

From Github

git clone https://github.com/nota-netspresso/pynetspresso.git
pip install -e .

Quick Start

Login

To use the PyNetsPresso, please enter the email and password registered in NetsPresso.

from netspresso.client import SessionClient
from netspresso.compressor import ModelCompressor

session = SessionClient(email='YOUR_EMAIL', password='YOUR_PASSWORD')
compressor = ModelCompressor(user_session=session)

Upload Model

To upload your trained model, simply enter the required information.

When a model is successfully uploaded, a unique 'model.model_id' is generated to allow repeated use of the uploaded model.

from netspresso.compressor import Task, Framework

model = compressor.upload_model(
    model_name="YOUR_MODEL_NAME",
    task=Task.IMAGE_CLASSIFICATION,
    framework=Framework.TENSORFLOW_KERAS,
    file_path="YOUR_MODEL_PATH", # ex) ./model.h5
    input_shapes="YOUR_MODEL_INPUT_SHAPES",  # ex) [{"batch": 1, "channel": 3, "dimension": [32, 32]}]
)

Automatic Compression

Automatically compress the model by setting the compression ratio for the model.

Enter the ID of the uploaded model, the name and storage path of the compressed model, and the compression ratio.

compressed_model = compressor.automatic_compression(
    model_id=model.model_id,
    model_name="YOUR_COMPRESSED_MODEL_NAME",
    output_path="OUTPUT_PATH",  # ex) ./compressed_model.h5
    compression_ratio=0.5,
)

Convert Model and Benchmark the Converted Model

Convert an ONNX model into a TensorRT model, and benchmark the TensorRT model on the Jetson Nano.

from loguru import logger
from netspresso.launcher import ModelConverter, ModelBenchmarker
from netspresso.launcher.utils.devices import filter_devices_with_device_name
from netspresso.launcher.schemas import ModelFramework, TaskStatus, DeviceName
from netspresso.launcher.schemas.model import BenchmarkTask, ConversionTask, Model, TargetDevice

converter = ModelConverter(user_session=session)

model: Model = converter.upload_model("./examples/sample_models/test.onnx")

available_devices: list[TargetDevice] = filter_devices_with_device_name(name=DeviceName.JETSON_NANO,
                                                                        devices=model.available_devices)
target_device = available_devices[0] # Jetson Nano - Jetpack 4.6
conversion_task: ConversionTask = converter.convert_model(model=model,
                                                            input_shape=model.input_shape,
                                                            target_framework=ModelFramework.TENSORRT,
                                                            target_device=available_devices[0],
                                                            wait_until_done=True)

logger.info(conversion_task)

CONVERTED_MODEL_PATH = "converted_model.trt"
converter.download_converted_model(conversion_task, dst=CONVERTED_MODEL_PATH)


benchmarker = ModelBenchmarker(user_session=session)
benchmark_model: Model = benchmarker.upload_model(CONVERTED_MODEL_PATH)
benchmark_task: BenchmarkTask = benchmarker.benchmark_model(model=benchmark_model,
                                                            target_device=target_device,
                                                            wait_until_done=True)
logger.info(f"model inference latency: {benchmark_task.latency} ms")
logger.info(f"model gpu memory footprint: {benchmark_task.memory_footprint_gpu} ms")
logger.info(f"model cpu memory footprint: {benchmark_task.memory_footprint_cpu} ms")

NetsPresso Model Compressor Best Practice

If you want to experience Model Compressor online without any installation, please refer to the NetsPresso-Model-Compressor-ModelZoo repo that runs on Google Colab.

Contact

Join our Discussion Forum for providing feedback or sharing your use cases, and if you want to talk more with Nota, please contact us here.
Or you can also do it via email(contact@nota.ai) or phone(+82 2-555-8659)!

Project details


Release history Release notifications | RSS feed

This version

1.1.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

netspresso-1.1.1-py3-none-any.whl (34.0 kB view details)

Uploaded Python 3

File details

Details for the file netspresso-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: netspresso-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 34.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for netspresso-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d65990edbfe8599d3fe5d6dd2f6c5b20894837d4a0df6deac9962f65dcd105d5
MD5 3d0e55f0347a2a75bf86724e3d047b0f
BLAKE2b-256 c93cfd0c941a1946ded630f178f3fc555a1c5a9564589155ff8b7b2fda1a76bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page