Skip to main content

Library to compute accessibility and symmetry in networks

Project description

Network symmetry

Fast library, written in C for python to calculate network Accessibility and Symmetry. More information regarding these measurements are described in the papers listed as follows:

Travençolo, Bruno Augusto Nassif, and L. da F. Costa. "Accessibility in complex networks." Physics Letters A 373, no. 1 (2008): 89-95.

Silva, Filipi N., Cesar H. Comin, Thomas K. DM Peron, Francisco A. Rodrigues, Cheng Ye, Richard C. Wilson, Edwin R. Hancock, and Luciano da F. Costa. "Concentric network symmetry." Information Sciences 333 (2016): 61-80.

If you use this code in a scientific study, please cite the respective references and this library.

A comprehensive guide to the theory and applications of the accessibility measurements is available from: Benatti, Alexandre, and Luciano da F. Costa. "Accessibility: Generalizing the Node Degree (A Tutorial)." (2021).

Install

Requires python headers and a C11 compatible compiler, such as gcc or clang.

To install it, simply run:

pip install network-symmetry

or clone this repository and install it from master by running:

pip install git+https://github.com/ABenatti/network_symmetry.git

Usage

Step 1: Import the libraries

import numpy as np
import network_symmetry as ns

Step 2: Convert network to an edge list and a list of weights (optional)

vertex_count = 10
edges = np.array([(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), (2, 4), (3, 4), (0, 4),
                  (4, 5), (3, 5), (1, 5), (1, 6), (3, 6), (4, 6), (5, 7), (4, 7), (0, 7), 
                  (5, 8), (4, 8), (3, 8), (3, 9), (7, 9), (0, 9)])
weights = np.random.random(size=edges.shape[0])
directed = False

Step 3: Load the network data in a measurer object

measurer = ns.Network(vertex_count = vertex_count, 
                      edges = edges, 
                      directed = directed, 
                      weights = weights
                      )

Step 4: Set the parameters:

h_max = 3
measurer.set_parameters(h_max= h_max)

Step 5: Calculate the measurements:

measurer.compute_symmetry()

Step 6: The outputs can be seen as follows.

print("\nResults:")
for h in range(2,h_max+1):
    print("h =", h)
    print(" Accessibility:")
    print(" ", measurer.accessibility(h))
    print(" Symmetry (backbone):")
    print(" ",measurer.symmetry_backbone(h))
    print(" Symmetry (merged):")
    print(" ",measurer.symmetry_merged(h))

Important: In order to be faster, this version of accessibility considers a random walk in which the walker cannot return to the already visited nodes.

API Documentation

measurer = ns.Network(vertex_count = vertex_count, 
                      edges = edges, 
                      directed = directed, 
                      weights= weights
                      )
  • vertex_count - number of vertices in the network;
  • edges - list of edges;
  • directed - directed or not;
  • weights - list containing the weights of the edges (use the same order as edges).
measurer.set_parameters(h_max = 2,
                        merge_last_level = True,
                        live_stream = False,
                        parallel_jobs = 1,
                        verbose = False,
                        show_status = True
                        )
  • h_max - Compute all symmetries and accessibilities for h=2 to h_max, which must be greater or equal to 2;
  • merge_last_level - Merge the last level. True by default;
  • live_stream - Stream the output as results are obtained. Note that the results may be out of order;
  • parallel_jobs - The number of parallel jobs, which must be greater or equal to 1;
  • verbose - If True, shows the calculation steps;
  • show_status - If True, show the progress of the calculation.
measurer.compute_symmetry()

Compute symmetries and accessibilities by using the parameters set in "set_parameters".

accessibility = measurer.accessibility(h)
symmetry_backbone = measurer.symmetry_backbone(h)
symmetry_merged = measurer.symmetry_merged(h)
  • h- desired number of steps. These methods return the respective lists measurements. The order of measures in the lists follows the node orders.

Libraries

All of these codes were developed and executed with the environment described in "requirements.txt".

Citation Request

If you publish a paper related to this material, please cite this repository and the respective papers.

Acknowledgements

Alexandre Benatti thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code (001) (grant no. 88882.328749/2019-01). Henrique F. de Arruda acknowledges FAPESP for sponsorship (grant no. 2018/10489-0). Luciano da F. Costa thanks CNPq (grant no. 307085/2018-0) and NAP-PRP-USP for sponsorship. This work has been supported also by FAPESP grant no. 2015/22308-2.

License

This software is under the following license.

Copyright (c) 2021 network-accessibility

network-accessibility (c) by Alexandre Benatti, Henrique Ferraz de Arruda
Filipi Nascimento Silva, and Luciano da Fontoura Costa

network-accessibility is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-nc-sa/4.0/>. 

Software provided as is and with absolutely no warranty, express or implied, 
with no liability for claim or damage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

network-symmetry-0.1.5.tar.gz (80.8 kB view details)

Uploaded Source

Built Distributions

network_symmetry-0.1.5-cp39-cp39-win_amd64.whl (136.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

network_symmetry-0.1.5-cp39-cp39-manylinux2010_x86_64.whl (443.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

network_symmetry-0.1.5-cp39-cp39-manylinux2010_i686.whl (384.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

network_symmetry-0.1.5-cp39-cp39-macosx_10_14_x86_64.whl (82.8 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

network_symmetry-0.1.5-cp38-cp38-win_amd64.whl (136.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

network_symmetry-0.1.5-cp38-cp38-manylinux2010_x86_64.whl (443.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

network_symmetry-0.1.5-cp38-cp38-manylinux2010_i686.whl (384.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

network_symmetry-0.1.5-cp38-cp38-macosx_10_14_x86_64.whl (82.6 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

network_symmetry-0.1.5-cp37-cp37m-win_amd64.whl (135.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

network_symmetry-0.1.5-cp37-cp37m-manylinux2010_x86_64.whl (441.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

network_symmetry-0.1.5-cp37-cp37m-manylinux2010_i686.whl (384.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

network_symmetry-0.1.5-cp37-cp37m-macosx_10_14_x86_64.whl (82.6 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

network_symmetry-0.1.5-cp36-cp36m-win_amd64.whl (135.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

network_symmetry-0.1.5-cp36-cp36m-manylinux2010_x86_64.whl (440.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

network_symmetry-0.1.5-cp36-cp36m-manylinux2010_i686.whl (383.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

network_symmetry-0.1.5-cp36-cp36m-macosx_10_14_x86_64.whl (82.6 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file network-symmetry-0.1.5.tar.gz.

File metadata

  • Download URL: network-symmetry-0.1.5.tar.gz
  • Upload date:
  • Size: 80.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network-symmetry-0.1.5.tar.gz
Algorithm Hash digest
SHA256 26e1ff56a883556214780af6b34b651caba1117d5f5384e568f898343322eddc
MD5 b9b44372057383c7cbce568846509713
BLAKE2b-256 c8a77afbe8570f2c7bcfd8f044e46e31c786388d78c580a2bc8be7f20da85620

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 136.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d09de4f8b49b3129bec78687ce36e1b5044e9186e49880306d320a2dfc7e36c6
MD5 f32f980629c1fffd3b61f07ebf345b55
BLAKE2b-256 cf2203176de01630cb2928bebcf7daea323fb651f3f6b34aa600593efcb327d2

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 443.0 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ded7ca3c355966b7a7d7f2444d943cafb0bbef4334a9c0545b2ba22e1e70f764
MD5 0aa34720cf1fb59a04e2857eca4c9100
BLAKE2b-256 cd3d9021bbc3f3775d231e28a9f849649a90ddb38b7cc7a48ebcf2d95c1d3889

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 384.5 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 327f377099a9fef80bf923ea1bcff21845ed5c4dd6adc705722b81056a0ff665
MD5 4720b633673e75665baabbb2be0e2e48
BLAKE2b-256 778e5cdc47a8f733d316fe078ed70027be0615b34ef5014a0df61e26512273fb

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 82.8 kB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 553011a7d708ac64b497e6fe30fd16bc49499d1063b65531a3459171ca81050b
MD5 50adac7011342f658a5328ac00596925
BLAKE2b-256 d12533d6622ba226d4f198d9a9ca3b08dbc52ae3725c17c41d8939e7d399cc8f

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 136.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 00787dc74360e46fef8fe2aebd1d036f7fd96df0cb5efef81cd49e322ab42741
MD5 6611ec9ab28d323a12544b802a4b7216
BLAKE2b-256 4c29e92598d1984018d36cc9cb30d1e0c55a4398f6087cd61a1dbbdbfd6f5f31

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 443.4 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d76772da591472c2a201109f271f65915cc5f54fa980d42848441a4d02e1e1b6
MD5 b3666b7f7a665e511eb6b538d26e3c16
BLAKE2b-256 a0febb48b85bd444cf2c7e6d39dcd321ba86768d2b2866e2059de3342a1f4377

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 384.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d78a355362b0cadab80e2f4ad401604cb374c0c73bda0878b281690e74e7f97e
MD5 81f9d5073d012cf2de3866b48939dcfd
BLAKE2b-256 790fee4f023b78c2fa9fcca6d089cb8647b6dd23f9dde0002b7f9e9c6ed6c22c

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d28937466be34c4c8fda7e7f7599c200dde75f4e4c0f926bc5c5b8192bec7ca2
MD5 6c0f4631b460e07c4a860a724d060b7c
BLAKE2b-256 9b8cfa2d9b5cde38c7f97f08ee23a5b41d22ec9b84ddb1165fbafe2de1a48c87

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 135.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 61492c7ed1c1550ba28257db0a003418d2c04cb63a3fcc0c6c56650f288f1e50
MD5 48094f49535394f709aeae863b0bff7b
BLAKE2b-256 dc6c32939f940d61429d03bb3b324c1695e3ba496a194b653163048547e7539e

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 441.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 66a7300f536b0138f1b034ebaa22f868c4a79323ca2f3ecdb6ee82992a12a154
MD5 3f4360efeea2c586aafe269164057e75
BLAKE2b-256 d7a18532110c501d84ecd3f372050b3a72bab1ad29cecdf9ad51c4fd650e249f

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 384.1 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a6faa480b754b6087d1132f42c84e13158e4d78b327d1bed7d5f0b6bc2b285bd
MD5 d0f85ae3923fc9a47974ade0449ef922
BLAKE2b-256 aaedc6093be07c6fe2d57a7deed5eb7623909d7bd276599e6af1052cdc5e9b40

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8489aa84648e4ac0b55a9ca146394b9a9964d876a04f32624c26c161dabd9d83
MD5 630fddc2a304b3a96de9bbfb94ad65a7
BLAKE2b-256 3492b1793546c25603000e1cc0e4e860b87171dd9c4fbc0d277d020e4dd69fad

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 135.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 07a4310fec80b814e3adc506813445e45de7c56e9b3a82e4873744abfba3a44d
MD5 b9292280d44e00cee231c0e2b05670c1
BLAKE2b-256 9bc66914b30a4f4db5348c8ee3af83fc5b56d931df5c1c89b6ed8f7aa9e0ef98

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 440.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 85c629a5ae622ffaa1c1e83a1b17f4a40e7788ccd03d555af19e3e05b54a5698
MD5 b9091f7740167d4a5b30ab703ff52919
BLAKE2b-256 3d07d39311e8ff0f6667e8c5d30dcabcdc21b501f0ba2d0c275e0cdce593fff0

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 383.1 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 746e67e74e56cdaff064ad68b08d9f7c661cd495476e1d9a9fdaba9891e628c8
MD5 d3987fdcf8ed217827a65e46796e336a
BLAKE2b-256 3381de3decf831c5ca16196a18b4ea837501445071a00fb832a68a76cf5796c7

See more details on using hashes here.

File details

Details for the file network_symmetry-0.1.5-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: network_symmetry-0.1.5-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for network_symmetry-0.1.5-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 353ad699a5d10679b668f16177ef007b41118bb5d7577d67ad90e5b656b7c1c8
MD5 8ae96114a3295e53ace7ca2203ee7548
BLAKE2b-256 ce36b7743796524bed29a94056e262f24787fafb515e58530e0cd8b19b1a47f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page