Skip to main content

Python

Project description

First Release: Perceptron Network

neural_network = Network()

training_inputs = np.array([[0,0,1,0],

[1,1,0,0], [1,0,1,0], [0,1,1,0] ])

training_outputs = np.array([[0,1,1,0]]).T

neural_network.train(training_inputs, training_outputs, 1000)

neural_network.run(np.array([[0,0,0,0]]))

CHANGELOG

0.0.1(2/23/2022)

-First Release: Perceptron Network

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NeuNet-0.0.2.tar.gz (2.8 kB view details)

Uploaded Source

File details

Details for the file NeuNet-0.0.2.tar.gz.

File metadata

  • Download URL: NeuNet-0.0.2.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/30.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.2.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.10.0

File hashes

Hashes for NeuNet-0.0.2.tar.gz
Algorithm Hash digest
SHA256 804e5ccbcde688f65565b96fa407b2d8bdc35d1a416b7afcac0e6f3290d61ff6
MD5 74bf2fc71ab7e9e1ecdb0138f5ef35f4
BLAKE2b-256 102b9a6bdf2ccfe1e5fc50f0889194909033c7af6319ae34273ad5d58b8ed6b3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page