Skip to main content

NeuPy is the Artificial Neural Network library implemented in Python.

Project description

|Travis|_ |Dependency Status|_ |License|_

.. |Travis| image:: https://api.travis-ci.org/itdxer/neupy.png?branch=master
.. _Travis: https://travis-ci.org/itdxer/neupy

.. |Dependency Status| image:: https://dependencyci.com/github/itdxer/neupy/badge
.. _Dependency Status: https://dependencyci.com/github/itdxer/neupy

.. |License| image:: https://img.shields.io/badge/license-MIT-blue.svg
.. _License: https://github.com/itdxer/neupy/blob/master/LICENSE


NeuPy v0.4.0
============

NeuPy is a Python library for Artificial Neural Networks. NeuPy supports many different types of Neural Networks from a simple perceptron to deep learning models.

.. image:: site/_static/img/mnist-solution-code.png
:width: 80%
:align: center

Installation
------------

.. code-block:: bash

$ pip install neupy

User Guide
----------

* `Install NeuPy <installation.html>`_
* Check the `tutorials <tutorials.html>`_
* Learn more about NeuPy in the `documentation <documentation.html>`_
* Explore lots of different `neural network algorithms <cheatsheet.html>`_.
* Read `articles <http://neupy.com/archive.html>`_ and learn more about Neural Networks.

Links
-----

* `Tutorials <http://neupy.com/docs/tutorials.html>`_
* `Documentation <http://neupy.com>`_
* `Articles <http://neupy.com/archive.html>`_
* `Cheat sheet <http://neupy.com/docs/cheatsheet.html#algorithms>`_
* `Open Issues <https://github.com/itdxer/neupy/issues>`_

Articles
--------

* `Password recovery <http://neupy.com/2015/09/21/password_recovery.html>`_
* `Discrete Hopfield Network <http://neupy.com/2015/09/20/discrete_hopfield_network.html>`_
* `Predict prices for houses in the area of Boston <http://neupy.com/2015/07/04/boston_house_prices_dataset.html>`_
* `Visualize Backpropagation Algorithms <http://neupy.com/2015/07/04/visualize_backpropagation_algorithms.html>`_
* `MNIST classification <http://neupy.com/2016/11/12/mnist_classification.html>`_

Examples
--------

Convolutional Neural Networks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* `MNIST CNN <examples/cnn/mnist_cnn.py>`_
* `CIFAR10 CNN <examples/cnn/cifar10_cnn.py>`_
* `Pretrained AlexNet CNN <examples/cnn/alexnet.py>`_
* `Pretrained VGG16 CNN <examples/cnn/vgg16.py>`_
* `Pretrained VGG19 CNN <examples/cnn/vgg19.py>`_
* `SqueezeNet <examples/cnn/squeezenet.py>`_
* `GoogleNet <examples/cnn/googlenet.py>`_
* `Inception v3 <examples/cnn/inception_v3.py>`_
* `ResNet 50 <examples/cnn/resnet50.py>`_

Autoencoders
~~~~~~~~~~~~

* `MNIST, Denoising Autoencoder <examples/autoencoder/denoising_autoencoder.py>`_
* `MNIST, Convolutional Autoencoder <examples/autoencoder/conv_autoencoder.py>`_
* `MNIST, Stacked Convolutional Autoencoders <examples/autoencoder/stacked_conv_autoencoders.py>`_

Boltzmann Machine
~~~~~~~~~~~~~~~~~

* `Feature Learning from the MNIST Images, Restricted Boltzmann Machine (RBM) <examples/boltzmann_machine/rbm_mnist.py>`_
* `Gibbs sampling using face images, Restricted Boltzmann Machine (RBM) <examples/boltzmann_machine/rbm_faces_sampling.py>`_

MLP Neural Networks
~~~~~~~~~~~~~~~~~~~

* `MNIST, Multilayer perceptron <examples/mlp/mnist_mlp.py>`_
* `Rectangle images, Multilayer perceptron <examples/mlp/rectangles_mlp.py>`_
* `Boston House Price prediction, Hessian algorithm <examples/mlp/boston_price_prediction.py>`_
* `Learning Algorithms Visualization, Gradient Descent, Momentum, RPROP and Conjugate Gradient <examples/mlp/gd_algorithms_visualization.py>`_
* `IMDB review classification using CBOW and RPROP MLP <examples/mlp/imdb_review_classification>`_

Competitive Neural Networks
~~~~~~~~~~~~~~~~~~~~~~~~~~~

* `Simple SOFM example <examples/competitive/sofm_basic.py>`_

Neural Networks with Radial Basis Functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* `Classify iris dataset, Probabilistic Neural Network (PNN) <examples/rbfn/pnn_iris.py>`_
* `Regression using Diabetes dataset, Generilized Neural Nerwork (GRNN) <examples/rbfn/grnn_params_selection.py>`_
* `Music-Speech audio classification, Probabilistic Neural Network (PNN) <examples/rbfn/music_speech>`_

Memory based Neural Networks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* `Sinus function approximation, CMAC <examples/memory/cmac_basic.py>`_
* `Visualize Discrete Hopfield Neural Network energy function <examples/memory/dhn_energy_func.py>`_
* `Password recovery, Discrete Hopfield Neural Network <examples/memory/password_recovery.py>`_

Dependencies
------------

* Python 2.7, 3.4, 3.5
* Theano == 0.8.2
* NumPy >= 1.9.0
* SciPy >= 0.14.0
* Matplotlib >= 1.4.0
* graphviz == 0.5.1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neupy-0.4.0.tar.gz (95.7 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page