Skip to main content

A high-level library on top of Pytorch.

Project description

Introduction

Python - Version PyPI - Version PyPI - Wheel Github - Tag License

A high level framework for general purpose neural networks in Pytorch.

Personally, going from Theano to Pytorch is pretty much like time traveling from 90s to the modern day. However, despite a lot of bells and whistles, I still feel there are some missing elements from Pytorch which are confirmed to be never added to the library. Therefore, this library is written to add more features to the current magical Pytorch. All the modules here directly subclass the corresponding modules from Pytorch, so everything should still be familiar. For example, the following snippet in Pytorch

from torch import nn
model = nn.Sequential(
    nn.Conv2d(1, 20, 5, padding=2),
    nn.ReLU(),
    nn.Conv2d(20, 64, 5, padding=2),
    nn.ReLU()
)

can be rewritten in Neuralnet-pytorch as

import neuralnet_pytorch as nnt
model = nnt.Sequential(
    nnt.Conv2d(1, 20, 5, padding='half', activation='relu'),
    nnt.Conv2d(20, 64, 5, padding='half', activation='relu')
)

which is the same as the native Pytorch, or

import neuralnet_pytorch as nnt
model = nnt.Sequential(input_shape=1)
model.add_module('conv1', nnt.Conv2d(model.output_shape, 20, 5, padding='half', activation='relu'))
model.add_module('conv2', nnt.Conv2d(model.output_shape, 64, 5, padding='half', activation='relu'))

which frees you from a lot of memorizations and manual calculations when adding one layer on top of another. Theano folks will also find some reminiscence as many functions are highly inspired by Theano.

Requirements

Pytorch >= 1.0.0

Matplotlib

Visdom

Tensorboard

Gin-config (optional)

Installation

Stable version

pip install --upgrade neuralnet-pytorch

Bleeding-edge version

pip install git+git://github.com/justanhduc/neuralnet-pytorch.git@master

To install the version with some collected Cuda/C++ ops, use

pip install git+git://github.com/justanhduc/neuralnet-pytorch.git@fancy

Usages

The manual reference is still under development and is available at https://neuralnet-pytorch.readthedocs.io.

TODO

  • Adding introduction and installation
  • Writing documentations
  • Adding examples

Disclaimer

This package is a product from my little free time during my PhD, so most but not all the written modules are properly checked. No replacements or refunds for buggy performance. All PRs are welcome.

Acknowledgements

The CUDA Chamfer distance is taken from the AtlasNet repo.

The AdaBound optimizer is taken from its official repo.

The adapted Gin for Pytorch code is taken from Gin-config.

The monitor scheme is inspired from WGAN.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuralnet-pytorch-1.0.0a.tar.gz (61.4 kB view details)

Uploaded Source

Built Distribution

neuralnet_pytorch-1.0.0a-py3-none-any.whl (49.2 kB view details)

Uploaded Python 3

File details

Details for the file neuralnet-pytorch-1.0.0a.tar.gz.

File metadata

  • Download URL: neuralnet-pytorch-1.0.0a.tar.gz
  • Upload date:
  • Size: 61.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for neuralnet-pytorch-1.0.0a.tar.gz
Algorithm Hash digest
SHA256 fce6e6e7a50871b387a6d90b1050b98c75e22ed52b6dc17bdff5220e24316f97
MD5 fab1c91076a4d22cfdc71c015c9f1374
BLAKE2b-256 77c8cbcdd670b55c77f22c0eec0e85bb623eff0cc2dbf73ef4f45f65b434dc1f

See more details on using hashes here.

File details

Details for the file neuralnet_pytorch-1.0.0a-py3-none-any.whl.

File metadata

  • Download URL: neuralnet_pytorch-1.0.0a-py3-none-any.whl
  • Upload date:
  • Size: 49.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for neuralnet_pytorch-1.0.0a-py3-none-any.whl
Algorithm Hash digest
SHA256 40d51dfad0be8ce3c985c0718b866d64d97f6ebb3f62b63418ab4e910231a7a5
MD5 aacd6a549668fc3afb307c48f5b7cdb3
BLAKE2b-256 91ded52ea977393ea3ef2f42ed40a3c92d16d477e5075cb3b36f1a6912b855fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page