Skip to main content

Neuroevolution Benchmark

Project description

NeuroEvoBench: Benchmarking Neuroevolution Methods for Machine Learning Applications 🦕 🦖 🐢

This repository contains benchmark results, helper scripts, ES configurations and logs for testing the performance of evolutionary strategies in evosax and EvoJAX.

The benchmark is meant to facilitate benchmarking of evolutionary optimization (EO) methods specifically tailored towards neuroevolution methods.

All task evaluations are written in JAX so that population evaluations can be parallelized on accelerators (GPU/TPU). This reduces the evaluation times significantly.

You can get started here 👉 Colab

Installation & Setup

# Create a clean conda environment
conda create -n es_bench python=3.9
source activate es_bench
# Install a GPU/TPU compatible jax/jaxlib version
pip install "jax[cuda11_cudnn82]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
# Install the neuroevobench benchmark from PyPi
pip install neuroevobench

Task Availability

Basic NeuroEvoBench Usage

Individual Benchmark Tasks

  • Note that the strategy to be evaluated has to follow the evosax ask-tell API.
from evosax import Strategies
from neuroevobench.problems.cifar import CifarPolicy
from neuroevobench.problems.cifar import CifarTask
from neuroevobench.problems.cifar import CifarEvaluator

# 1. Create policy for task (CNN classifier)
policy = CifarPolicy()

# 2. Define train/test task based on configs/eval settings
train_task = CifarTask(config.task_config.batch_size, test=False)
test_task = CifarTask(10000, test=True)

# 3. Setup task evaluator with strategy and policy
evaluator = CifarEvaluator(
    policy=policy,
    train_task=train_task,
    test_task=test_task,
    popsize=config.popsize,
    es_strategy=Strategies[config.strategy_name],
    es_config=config.es_config,
    es_params=config.es_params,
    seed_id=config.seed_id,
    log=log,
)

# 4. Run the ES loop with logging
evaluator.run(config.num_generations, config.eval_every_gen)

Running Parameter Search Sweeps

  • Please visit neuroevobench-analysis for example configurations used for the 10 EO baselines and 9 neuroevolution tasks.

  • You can execute random search sweeps, multi-seed evaluations for the best found settings and individual training runs via the following command line shortcuts:

neb-search --config_fname ${CONFIG_FNAME} --seed_id ${SEED_ID} --experiment_dir ${EXPERIMENT_DIR}
neb-eval --config_fname ${CONFIG_FNAME} --seed_id ${SEED_ID} --experiment_dir ${EXPERIMENT_DIR}
neb-run --config_fname ${CONFIG_FNAME} --seed_id ${SEED_ID} --experiment_dir ${EXPERIMENT_DIR}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuroevobench-0.0.1.tar.gz (46.1 kB view details)

Uploaded Source

Built Distribution

neuroevobench-0.0.1-py3-none-any.whl (77.3 kB view details)

Uploaded Python 3

File details

Details for the file neuroevobench-0.0.1.tar.gz.

File metadata

  • Download URL: neuroevobench-0.0.1.tar.gz
  • Upload date:
  • Size: 46.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for neuroevobench-0.0.1.tar.gz
Algorithm Hash digest
SHA256 e31ee5867f0aa4c6de251a30976f07771079df802c8b1f1047b2cc4c5a6aaed0
MD5 01034fd570bcc33835b43cd535598234
BLAKE2b-256 472ad7cb4974da815b907ebdebda1cbe476e3f1a70bfa2fc95309e7d747951c9

See more details on using hashes here.

File details

Details for the file neuroevobench-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for neuroevobench-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3a4e6db518e5b4e91add9d87a5c1ed1fc51aaeb304129d44a00a2e24a11d7250
MD5 f3afe4656bc4aa2650cd82ae1a24cd1a
BLAKE2b-256 e4d9f5247aedc8fd9281e849b8b56d8d59932fc8c82ce87f7eaadf621740e364

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page