Skip to main content

A toolbox for projecting, resampling, and comparing brain maps

Project description

https://github.com/netneurolab/neuromaps/raw/main/docs/_static/neuromaps_logo.png

Zenodo record Latest PyPI version Latest Docker image run-tests status deploy-docs status

The neuromaps toolbox is designed to help researchers make easy, statistically-rigorous comparisons between brain maps (or brain annotations). Documentation can be found here.

The accompanying paper is published in Nature Methods (postprint).

Features

  • A growing library of brain maps (“annotations”) in their original coordinate space, including microstructure, function, electrophysiology, receptors, and more

  • Robust transforms between MNI-152, fsaverage, fsLR, and CIVET spaces

  • Integrated spatial null models for statistically assessing correspondences between brain maps

https://github.com/netneurolab/neuromaps/raw/main/docs/_static/neuromaps_features.png

Installation requirements

Currently, neuromaps works with Python 3.8+. You can install stable versions of neuromaps from PyPI with pip install neuromaps. However, we recommend installing from the source repository to get the latest features and bug fixes.

You can install neuromaps from the source repository with pip install git+https://github.com/netneurolab/neuromaps.git or by cloning the repository and installing from the local directory:

git clone https://github.com/netneurolab/neuromaps
cd neuromaps
pip install .

You will also need to have Connectome Workbench installed and available on your path in order to use most of the transformation / resampling functionality of neuromaps.

Citation

If you use the neuromaps toolbox, please cite our paper. Importantly, neuromaps implements and builds on tools that have been previously developed, and we redistribute data that was acquired elsewhere. Please be sure to cite the appropriate literature when using neuromaps, which we detail below.

  • If you use volume-to-surface transformations (registration fusion), please cite Buckner et al 2011 (original proposition) and Wu et al 2018 (first implementation of MNI152 to fsaverage transformation).

  • If you use surface-to-surface transformations (multimodal surface matching), please cite Robinson et al 2014 and Robinson et al 2018.

  • If you use data included in neuromaps, please cite the the original papers that publish the data. A table with references for each brain annotation can be found in our wiki, or more specifically, at this link.

  • If you use the spatial null models, there is an associated citation with each type of null model. They can be found in the docstring of the function, and also the full list of functions.

License information

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License cc-by-nc-sa. The full license can be found in the LICENSE file in the neuromaps distribution.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuromaps-0.0.5.tar.gz (109.6 kB view details)

Uploaded Source

Built Distribution

neuromaps-0.0.5-py3-none-any.whl (101.7 kB view details)

Uploaded Python 3

File details

Details for the file neuromaps-0.0.5.tar.gz.

File metadata

  • Download URL: neuromaps-0.0.5.tar.gz
  • Upload date:
  • Size: 109.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for neuromaps-0.0.5.tar.gz
Algorithm Hash digest
SHA256 a85959088f419dd5ddeeaa7d79c9e3ed13c281c397c9d55275871435b1e9a6e2
MD5 4352c5c48a820cc28b9687b29bfb5a0a
BLAKE2b-256 7b6149ce118a84941b06e6c8ad6fc14cae471f87ca16ab271da7fe2fc9cb767b

See more details on using hashes here.

File details

Details for the file neuromaps-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: neuromaps-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 101.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for neuromaps-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 dc4613b8092fe254324c13e007a29c8afd5a1dddef7093b91eae7a9f172cd248
MD5 9d7581c8dc5e55e45d54a187318cb505
BLAKE2b-256 8f19449248987253adcaa4836678438318b88d8f192ec138df4fb5b6c2f2c747

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page