Skip to main content

A wrapper library for exposing the C++ neighborhood graph library (NGL) for computing empty region graphs to python

Project description

Latest Version on PyPI PyPI downloads Code Quality Test Results Test Suite Results CodeFactor Coveralls ReadTheDocs Pyup This code is formatted in black This code has its imports sorted with isort BSD 3-Clause License nglpy

A Python wrapped version of the [Neighborhood Graph Library (NGL) developed by Carlos Correa and Peter Lindstrom.

Given a set of arbitrarily arranged points in any dimension, this library is able to construct several different types of neighborhood graphs mainly focusing on empty region graph algorithms such as the beta skeleton family of graphs.

Installation

pip install nglpy

Usage

Then you can use the library from python such as the example below:

import nglpy
import numpy as np

point_set = np.random.rand(100,2)
max_neighbors = 9
beta = 1

aGraph = nglpy.EmptyRegionGraph(max_neighbors=max_neighbors, relaxed=False, beta=beta)
aGraph.build(point_set)

aGraph.neighbors()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nglpy-1.1.7.tar.gz (131.7 kB view details)

Uploaded Source

Built Distributions

nglpy-1.1.7-pp39-pypy39_pp73-win_amd64.whl (119.6 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (199.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (213.0 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (146.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.7-pp38-pypy38_pp73-win_amd64.whl (120.0 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (199.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (213.1 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (147.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.7-pp37-pypy37_pp73-win_amd64.whl (119.6 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (200.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.7-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (214.3 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (146.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.7-cp311-cp311-win_amd64.whl (119.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

nglpy-1.1.7-cp311-cp311-win32.whl (95.7 kB view details)

Uploaded CPython 3.11 Windows x86

nglpy-1.1.7-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

nglpy-1.1.7-cp311-cp311-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

nglpy-1.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nglpy-1.1.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.7-cp311-cp311-macosx_10_9_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nglpy-1.1.7-cp310-cp310-win_amd64.whl (119.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

nglpy-1.1.7-cp310-cp310-win32.whl (95.7 kB view details)

Uploaded CPython 3.10 Windows x86

nglpy-1.1.7-cp310-cp310-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

nglpy-1.1.7-cp310-cp310-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

nglpy-1.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nglpy-1.1.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.7-cp310-cp310-macosx_10_9_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nglpy-1.1.7-cp39-cp39-win_amd64.whl (119.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

nglpy-1.1.7-cp39-cp39-win32.whl (95.7 kB view details)

Uploaded CPython 3.9 Windows x86

nglpy-1.1.7-cp39-cp39-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

nglpy-1.1.7-cp39-cp39-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

nglpy-1.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nglpy-1.1.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.7-cp39-cp39-macosx_10_9_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nglpy-1.1.7-cp38-cp38-win_amd64.whl (120.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

nglpy-1.1.7-cp38-cp38-win32.whl (95.8 kB view details)

Uploaded CPython 3.8 Windows x86

nglpy-1.1.7-cp38-cp38-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

nglpy-1.1.7-cp38-cp38-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

nglpy-1.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nglpy-1.1.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.7-cp38-cp38-macosx_10_9_x86_64.whl (163.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nglpy-1.1.7-cp37-cp37m-win_amd64.whl (119.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

nglpy-1.1.7-cp37-cp37m-win32.whl (96.0 kB view details)

Uploaded CPython 3.7m Windows x86

nglpy-1.1.7-cp37-cp37m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

nglpy-1.1.7-cp37-cp37m-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

nglpy-1.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nglpy-1.1.7-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.7-cp37-cp37m-macosx_10_9_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nglpy-1.1.7.tar.gz.

File metadata

  • Download URL: nglpy-1.1.7.tar.gz
  • Upload date:
  • Size: 131.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7.tar.gz
Algorithm Hash digest
SHA256 a9fe550f2faf8b7b7712a768f3b39b15ef235743035732444a648e65786fbfad
MD5 ea1473567d9f4dde1c0109c3964660f0
BLAKE2b-256 5e0fb135b420a0c6cd64038e2d69c44ae21005c369ec8ce4897752c06bf5c8bc

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 48585d8565e7b3abeb4ab06914ef8e685a3c8f74e4805eb384f5e06f4ba85a63
MD5 09d7312950a1dbf29cc481df402b62b3
BLAKE2b-256 0afab27e04a989850135fb25a0c1cde47652f3b45113bfdd72d7e0b219a4f0cf

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 106bea9f4c8db77ba62b6d2d99cca7da09851483632dbe649e6af5d9ca323d3f
MD5 0384434fcbd13db65fe55aea2b1aa17c
BLAKE2b-256 c694a9b8b2c6dd697804643c615a697a96ff41dd30d5f99f892e31e7838e382d

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 985364344b8b5fb65ebf206ef041d28be73f652e00d4164771af5babc5ff6a91
MD5 212be1fcda578ab26fae1faf66d70a65
BLAKE2b-256 c16def1f52c5dc047ae1445428a65367a61bad8adef73a5ad3e1654f2430a900

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 98937d1a298ab9bb34f261575f8b2e8a1421ffc35955baf9e3a96089d30cc66b
MD5 24ec073954a5ff26e77e9a665c37aacc
BLAKE2b-256 4d625305c1c22d7b28475666ab95732a13cc8bd649c2bc004193cc58a1b46b80

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 00b816a11c64317f7ef8385aaa1ba812f9146730fc64bb3200220ad38793ad8c
MD5 f91cf94d1ad4033b5042f96837ece074
BLAKE2b-256 5ce9ed29e650a46461110fa5a8e886054bfe60e5c52ba01ae8ca9eda28cf6910

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1cd463241e76d834188ecd7ac41d0fb69b9f1667aff16244baaacaa7efd1938
MD5 9eab5aa68b01e7d8cc389d3aafa43a1c
BLAKE2b-256 86162aa48d93f844091ff5b820ba0d59f3b8f13bd1dba357ad8f4cb1ec9f7668

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 351a8a880e76267e9e40693607703f7b8ba537612388fe49e9043629c4840d82
MD5 664b087d4b3830cf1cd27e5260ffe00d
BLAKE2b-256 afcaa7bd1bf576cd0732d91cad2b1406767e3262229bd96164e33da9716b764e

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 008270e4f1f8174a4aba37e05a55ff3b043661e5151e01f3e6d43f18ffc2f2c1
MD5 07d4868ccac023b80b5d6e1634bcac4a
BLAKE2b-256 d345d25862c656d00b307f0f0e2d6a8661b0782b1aa29a0173f604c197da17ba

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 659054533a26a0222fef76cef542508db750b551334852587e1aa447d8390839
MD5 8bddc1fe80c0f3133a89e576353ff146
BLAKE2b-256 d7da2ff9356361d295c78e5203f5a7cac0896f638b7dbcc6ff368f3596fd5ad4

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d849be78f9ed9adcc1c8e4404f0ee7c1d7aa18ae172e0eb8ee9c72d3bcc5cf6
MD5 74d4a2dc5fddfab7f9b94d98e6b62dc8
BLAKE2b-256 acbf5d73e6d195ef985619c3932b31a8067a85b59cdb8ee8dbee1692a001ce35

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2afcb3bdfa93ce3a0b27e4441961b1408c54c7a7855a104876cc1333e31fa8c2
MD5 8530d0556e9c0057103fc6fbedc953a3
BLAKE2b-256 8c5d6063e38f8208c3a5ced1078b28eb481b343d6672876fc5277f1d916beb3d

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f76c9cee0e025ab014b5050434731cf23f8fabb2ee572663a0f8a5cc8da7d6e
MD5 55bfbdee71a49f2ffff68fc3e9e01eb0
BLAKE2b-256 85d0c8f4cd07a0ded0ab9d05a5bee3ef33fb3ab78fb692d8665e91bc97295d8f

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3ec136ed11d35984d76c439b0b8ebded5710578c0ae4b3248961987cea8aecbb
MD5 6434635010227bd43e7e752290486d45
BLAKE2b-256 77c67d656717a41a9014919b18915310d86274183ee241a71d98043c9a86e2d3

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 95.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 daea02e7a4ca991307613c4a45fc02e64d3b74e6254dfa40a7461fc504e02dbe
MD5 634dece470c1f18d1c276a9d34b17df6
BLAKE2b-256 794aeb791f184031f1bf590e585a4b83c8426ce24e4b46ef9830222338300927

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ce670980c7fed02dbdc893863c71f8d4ee61898001f58b671df9938df28453b6
MD5 76a8b0052447009bc58fd496ad1eae10
BLAKE2b-256 361b1677610e6a0ddd0b0d3048d36522e4da0309e53849b702050d10ee3a5ecc

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 038a8b293ec0cf85dc12e1596bc30f32e95267448e0fcb4666c346d5aee23d7b
MD5 58747d456d01c0280c0b9b89e7c590ca
BLAKE2b-256 4cde79b571e06fcc82440e91bc32f301aa40b963451a93763bc43e426ac6db97

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a1bce1519a52985d6d89a0cf32370d20bbd9b2ab11df42007912e055741bb93
MD5 fed61a06926705f98e304506eeaf1d1e
BLAKE2b-256 e9df0103a523079b9a2d482329587b6e650e8ecce71b0cfc24600fefac2f1c74

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 630d64eee2dbe5a9725b5a4b732b9fe4310a0e343deee0bd1d8929b2fa29113e
MD5 2bb468789a0dfeb118095278cd27ddff
BLAKE2b-256 0c5eee230aab938a83cbd6bdc8457b612de506aa50cc442246bbdb4ae442bcaf

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 771d573a6c9f597ab8e2c009c503f07a1b6f8363bad8d4a585584f58bf803b53
MD5 5ede8b3e85bf3d19a87840addddba5f7
BLAKE2b-256 7d8893257559ca575857a6c351039854a6e828ddaf234cbd5ddb2af3deca7ed5

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 15287925fc15f3d21b1b49245d18ea613c33ff3af6655b968ff8314ae97f458c
MD5 ddfd349d18e6ade592309af12c909f2b
BLAKE2b-256 d98e8d3a040473882dac20814a6e8c790d1d6a26cb26a443e06ec1bdde2d93cb

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 95.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 94dc520da3f67cb7bb55377fbfca76a82bb4ffafac7a16bf31a9f60a46b9f86f
MD5 e13f389a1a67f848908a32b75944e365
BLAKE2b-256 b61ed658f30c3a04cc45510397a951f76ceda5ac343eebf09509e990ca8bb0d2

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e081f8336c1e34d11c559ce8e89fa21ce9f92c18d45ddc814f4ab840faeccc00
MD5 b8420b19b46f25076e7cf430c0556ea0
BLAKE2b-256 abe02050a4b4a829f4eaced7db59b25fadb4795ef0fe111b986ecd02ee2ee8b6

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 da062aba433bfb953afeeb269858eeb7e127718b1c4881cac52ad1babcd859ae
MD5 4f6934dea32bc8012166c9eca2ec893b
BLAKE2b-256 475ad75dd8ffccfe57b5636585e1ba7d4ccf9b5e482f5cfab4b0a51464188b70

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d89f0bc9910c187ef6107d3792ec839844474710071cc2066afcb4b3b010db19
MD5 a57f1c8524e644dabe26396348b9a1c9
BLAKE2b-256 f4ef061476d2820dfb9da7d0b7f7f409d36f57a5101ca4db89267d526f1f7885

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8703453eefe51a54c1c1df9640b0061335f3e2db4f8f24e618325fd4800f14d5
MD5 e1e8ac11413df0afef3db10732a0dd16
BLAKE2b-256 78a012c643599de0369a3987a6744c462b8803114e03a303949d9bb99d0997f6

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2762a4af8d7f0e0834d17ea8fee99f533b6b51e616f73177065069c77ad62bb1
MD5 9e14325ae21e569ea87f59aa5560e1fa
BLAKE2b-256 3b2e7d46925825d8e6ad92463b1050252eca0b219783208de26ba9a4a3996ae3

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2f93199d44f82f43937f9ab2e335ad3a1a4d05fc4995b776133d2ea5c31eaa08
MD5 0f54650464fc67e831cfa8c5ff15f4fd
BLAKE2b-256 dd6c2164f726157ab35f57470af721062df748aad0d96a0c092c9a66ff4103a3

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 95.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 16e00654fe870902193ff789082e6a16057c9a99563cdbe3306554fdad8ee201
MD5 864619ad1989568a749e13ea71f4d9e9
BLAKE2b-256 7e4b7203b61f13180d3ca4ca4c399eeefda5a15043a7778995618b58abb740f1

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b556d7e90a4ca8d907fd7d093b8a10be62e50551215fe693def7727de2989108
MD5 56e3ac0f87a5d91c0b50756ca1897e28
BLAKE2b-256 9410e56e248471852160e8181a34dccda55a229eebb59369e2f03ca948740231

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1c2b21c7cd9722a871e18934dd489234e81026f3c82b50ace11f3d9487506aed
MD5 963da74c63a91871d1a9514de4c4595f
BLAKE2b-256 8f99083157163f60d69d292c85844d56715a779ffa9ea8e4a9b42c4e4121af50

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31cdf96bba8b373b81c32a1347aaf1b687c8ee00ca667bcd5494c4bfa610a41f
MD5 cdfd8428d8d8dd555f3b848f81bae1ad
BLAKE2b-256 5a9d377d69205339c3e752e2c65dd5fabecc38a75ef6a97291a951db8389dc2f

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0defb57b09ef656f2380416c53be1a6ed5878a7c58cf35271f2d1a21ad8d5db5
MD5 b09142a5ef94190f63e1dac2988941de
BLAKE2b-256 699c6ab721299d797b10930b7194c15b9809e91af3ece308c250f4e9badfb4b4

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11cce676a1562f421920151fa8c0bb6c20e58d440c8ef844eb2a04df6ac72cf2
MD5 bc149a4adf75e58ce713fd73179611d9
BLAKE2b-256 c464ec16aaa89013dbc3c02e9f4d0112d0496523dc633b65a23e7a0679b9f3b2

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 120.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0bbda11be71b5387b2981c969c9174e2dab38922649350d5f2fe4f7be5adfcc4
MD5 bd361342060064b4a7c189a30f816af3
BLAKE2b-256 ad85020a1e66821f057cf8f27fa0d030220f0919e30b0d2a694a8701d0610bb4

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 95.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d01d01d89fc2e3bd48776dfe42200d787ff398da1ed20907be0a28eaf81c6bc2
MD5 c3da23941115ab4bba8e994766fe2f1d
BLAKE2b-256 cbf4c1311f5723c1f7913b3ae56e31672cd5ad06fdb42188331bafa64c653e5f

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 62081a86a889149f07416c026590c8252fa0e210ddfa8c00154328dd9d7745c4
MD5 111781a21f0352c6d980993c89d87960
BLAKE2b-256 21971009297a2812fcb2310bfbfd4c74126a31fd09262af3fafee4f27c3a64aa

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5d27de3edc73e738ee5ad1932678bc72f671a057a0c4340427ad57df01a314d4
MD5 6c758f59a2c463b40f8a195a4ec2c72b
BLAKE2b-256 7ce5e71c9a243ac40d43ea817547f1357562fe51e432974001bd20f16196ce66

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa824d35da809474108a669e52bde0ce9d11fbbde969126790c4f702d6304888
MD5 b7bb1d70d17659af299ac9b725f03a49
BLAKE2b-256 511fac1dfe8171a9103bb8d2eb1319ed4dccc8bb5f159e6e26a2e3c6438ec87f

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e55e83c24e70d0bdededd4bb462b0e98d47797bec6b855ba7407ba7df4b0986e
MD5 ab19c068f26ac2bba52bc79258231166
BLAKE2b-256 03638fb57e4462a8e53d50d688343feda364ecc008ecd6d1a4b1a5c9f1715dd3

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 269fb1aedff11caa72818258716262a78d0f81e44ec11d1e98ff6e536048ff3c
MD5 433df546b9eba657a542752fcf68d7cb
BLAKE2b-256 74433992c2e3d6e91bd7a20908563e772c62ca487c110cb9a53832f4dd7639a6

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 61b31f57d6b2cfe7b987b741e9068596c8ab2e8db4a780bed948c492d1e831f8
MD5 f12956481df9ae0b16406dc548dc2b09
BLAKE2b-256 c6c5d8a7d553b68ae01cd42974d0e43c60e4415f220895d6a2fca1f42491b515

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: nglpy-1.1.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 96.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4ca0b1edbe18d0b4e2a3cff7ba8501daf1590ea442d761d1aafaa108c018de31
MD5 78c2e71225dc2b29455a546f59316c4c
BLAKE2b-256 d43351362b1eeee95da1204b688f5d3802971d6d2a9a149bb26a958b4934a2e9

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 269fe6fb9134b88d67be1f2fb3e541d8d23b4c3f4bff809109f5fdef8695f324
MD5 32d04b8cf061c429c84a20332e726fe6
BLAKE2b-256 f92eb1e9397e8171b3ad1e64a571888fc1e632a2f943cbe48a889f630f5722ba

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2d41874841cd91d22c78dff4fac9afb9cd77734728840f61f1cbc3a8de993bf6
MD5 b4f88d20df485a09dafbb92b61264314
BLAKE2b-256 6c2a9a7e55c31a7322cd961e6794406fb49ccd93e111db8ffa31c98ca47034e8

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55bb7531d9003b4b3500910f7d0eebc9a15c84ae562495de140a1d2f24761122
MD5 679d76a1f921ab6c48ea9a51010cef73
BLAKE2b-256 40a45dbcf8bf93e229dc22e72fe835a76ce6edf42434d3df302da20025f15835

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0b8b4e9308ee3eeb3ef654c319671a3ea6aa74e85d4771f2f3a0c11a73e8e751
MD5 9ab9fdfeacc33e0db1269b07944f9750
BLAKE2b-256 54deac2537e946343c66296ff4a574b3b7fb9495c52bad8e7413d404fd4d174b

See more details on using hashes here.

File details

Details for the file nglpy-1.1.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf11f366a84f6e8132579f22d6f0f3f93932dd3feea95c16710e297f83b12e85
MD5 04d8f9b0d89ed6f6613848d236bfcc7d
BLAKE2b-256 53cad1717f8317fb2f35c161f40573d33b5802ab0204514d033467f1238c8f83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page