Skip to main content

Network Informed Restricted Vector Autoregression

Project description

NIRVAR

Network Informed Restricted Vector Autoregression

This repository contains the code and data used to obtain simulation study and applications results for the NIRVAR paper.

Note that the financial returns data is too large to store on GitHub. The data is available upon request from b.martin22@imperial.ac.uk.

Installation

Project Organization

├── LICENSE            <- MIT
├── Makefile           <- Makefile based on cookiecutter data-science template
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── generated      <- Data generated from simulation studies
│   ├── processed      <- Transformed data used for model training
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Scripts for training NIRVAR/FARM/FNETS/GNAR models on application datasets.
                          Also contains scripts for NIRVAR simulation studies.
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to transform data for applications 
│       └── clean_stocks.py
│       └── transform_raw_data.R
│   │
│   ├── models         <- Scripts to generate simulation data, train a NIRVAR model on data, and do predictions 
│   │                     using trained model
│   │   ├── generativeVAR.py
│   │   └── train_model.py
    |   └── predict_model.py
│   │
│   └── visualization  <- Scripts to visualize results 
│       └── 0.3-ARI-comparisons.py
│       └── 0.3-embedding-dim.py
│       └── 0.3-SICCD-bars-plot.py
│       └── 0.3-turnover.py
│       └── 0.3-visualise-backtesting.py
│       └── factors_over_time.py
│       └── utility_funcs.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nirvar-1.0.0.tar.gz (42.9 kB view details)

Uploaded Source

Built Distribution

nirvar-1.0.0-py3-none-any.whl (55.5 kB view details)

Uploaded Python 3

File details

Details for the file nirvar-1.0.0.tar.gz.

File metadata

  • Download URL: nirvar-1.0.0.tar.gz
  • Upload date:
  • Size: 42.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nirvar-1.0.0.tar.gz
Algorithm Hash digest
SHA256 fe0f44f658336c108341fa694a21994b478dae0e316fd91c116453b2615cc2c5
MD5 3f3fe49760a58efddca53fd45b5992a7
BLAKE2b-256 40db22ad2db0dcb0d61ffb4f4de3902069fc82a8f850e4828ea8745fc023c583

See more details on using hashes here.

File details

Details for the file nirvar-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: nirvar-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for nirvar-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 470ddbe424cbe4920558f278243ea017fbcc886cd64e5bbf083612b7483cf64a
MD5 bc92dab9dc3f07ee8b745b5a2db8a20e
BLAKE2b-256 d8f7837eb26739c156bff0015a4fb6658d9d023c0bd7de628a959136409351e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page