Skip to main content

Machine learning audio prediction experiments based on templates

Project description

Overview

A project to detect speaker characteristics by machine learning experiments with a high-level interface.

The idea is to have a framework (based on e.g. sklearn and torch) that can be used to rapidly and automatically analyse audio data and explore machine learning models based on that data.

Here are some examples of typical output:

Confusion matrix

Per default, Nkululeko displays results as a confusion matrix using binning with regression.

Epoch progression

The point when overfitting starts can sometimes be seen by looking at the results per epoch:

Feature importance

Using the explore interface, Nkululeko analyses the importance of acoustic features:

Feature distribution

And can show the distribution of specific features per category:

t-SNE plots

A t-SNE plot can give you an estimate wether your acoustic features are useful at all:

Data distribution

Sometimes you only want to take a look at your data:

Bias checking

In cases you might wonder if there's bias in your data. You can try to detect this with automatically estimated speech properties, by visualizing the correlation of target label and predicted labels.

Uncertainty

Nkululeko estimates uncertainty of model decision (only for classifiers) with entropy over the class-probabilities or logits per sample.

Documentation

The documentation, along with extensions of installation, usage, INI file format, and examples, can be found nkululeko.readthedocs.io.

Installation

Create and activate a virtual Python environment and simply run

pip install nkululeko

We excluded some packages from the automatic installation because they might depend on your computer and some of them are only needed in special cases. So if the error

module x not found

appears, please try

pip install x

For many packages you will need the missing torch package. If you don't have a GPU (which is probably true if you don't know what that is), please use

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu

else, you can use the default:

pip install torch torchvision torchaudio

Some functionalities require extra packages to be installed, which we didn't include automatically:

  • the SQUIM model needs a special torch version:
    pip uninstall -y torch torchvision torchaudio
    pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
    
  • the spotlight adapter needs spotlight:
    pip install renumics-spotlight sliceguard 
    

Some examples for ini-files (which you use to control nkululeko) are in the tests folder.

Usage

ini-file values

Nkululeko works by specifiying

Basically, you specify your experiment in an "ini" file (e.g. experiment.ini) and then call one of the Nkululeko interfaces to run the experiment like this:

  • python -m nkululeko.nkululeko --config experiment.ini

A basic configuration looks like this:

[EXP]
root = ./
name = exp_emodb
[DATA]
databases = ['emodb']
emodb = ./emodb/
emodb.split_strategy = speaker_split
target = emotion
labels = ['anger', 'boredom', 'disgust', 'fear']
[FEATS]
type = ['praat']
[MODEL]
type = svm
[EXPL]
model = tree
plot_tree = True

Read the Hello World example for initial usage with Emo-DB dataset.

Here is an overview of the interfaces/modules:

All of them take --config <my_config.ini> as an argument.

  • nkululeko.nkululeko: do machine learning experiments combining features and learners

  • nkululeko.ensemble: combine several nkululeko experiments and report on late fusion results

    • --config: which experiments (INI files) to combine
    • --method (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
    • --threshold: uncertainty threshold (1.0 means no threshold)
    • --weights: weights for performance_weighted method (could be from previous UAR, ACC)
    • --outfile (optional): name of CSV file for output (default: ensemble_result.csv)
    • --no_labels (optional): indicate that no ground truth is given
  • nkululeko.multidb: do multiple experiments, comparing several databases cross and in itself

  • nkululeko.demo: demo the current best model on the command line

    • --list (optional) list of input files
    • --file (optional) name of input file
    • --folder (optional) parent folder for input files
    • --outfile (optional) name of CSV file for output
  • nkululeko.test: predict a given data set with the current best model

  • nkululeko.explore: perform data exploration

  • nkululeko.augment: augment the current training data

  • nkululeko.aug_train: augment the current training data and do a training including this data

  • nkululeko.predict: predict features like SNR, MOS, arousal/valence, age/gender, with DNN models

  • nkululeko.segment: segment a database based on VAD (voice activity detection)

  • nkululeko.resample: check on all sampling rates and change to 16kHz

  • nkululeko.nkuluflag: a convenient module to specify configuration parameters on the command-line. Usage:

    $ python -m nkululeko.nkuluflag.py [-h] [--config CONFIG] [--data [DATA ...]] [--label [LABEL ...]] [--tuning_params [TUNING_PARAMS ...]] [--layers [LAYERS ...]] [--model MODEL] [--feat FEAT] [--set SET] [--with_os WITH_OS] [--target TARGET] [--epochs EPOCHS] [--runs RUNS] [--learning_rate LEARNING_RATE] [--drop DROP]
    

There's my blog with tutorials:

Hello World example

  • NEW: Here's a Google colab that runs this example out-of-the-box, and here is the same with Kaggle
  • I made a video to show you how to do this on Windows
  • Set up Python on your computer, version >= 3.8
  • Open a terminal/commandline/console window
  • Test python by typing python, python should start with version >3 (NOT 2!). You can leave the Python Interpreter by typing exit()
  • Create a folder on your computer for this example, let's call it nkulu_work
  • Get a copy of the Berlin emodb in audformat and unpack inside the folder you just created (nkulu_work)
  • Make sure the folder is called "emodb" and does contain the database files directly (not box-in-a-box)
  • Also, in the nkulu_work folder:
    • Create a Python environment
      • python -m venv venv
    • Then, activate it:
      • under Linux / mac
        • source venv/bin/activate
      • under Windows
        • venv\Scripts\activate.bat
      • if that worked, you should see a (venv) in front of your prompt
    • Install the required packages in your environment
      • pip install nkululeko
      • Repeat until all error messages vanished (or fix them, or try to ignore them)...
  • Now you should have two folders in your nkulu_work folder:
    • emodb and venv
  • Download a copy of the file exp_emodb.ini to the current working directory (nkulu_work)
  • Run the demo
    • python -m nkululeko.nkululeko --config exp_emodb.ini
  • Find the results in the newly created folder exp_emodb
    • Inspect exp_emodb/images/run_0/emodb_xgb_os_0_000_cnf.png
    • This is the main result of you experiment: a confusion matrix for the emodb emotional categories
  • Inspect and play around with the demo configuration file that defined your experiment, then re-run.
  • There are many ways to experiment with different classifiers and acoustic features sets, all described here

Features

The framework is targeted at the speech domain and supports experiments where different classifiers are combined with different feature extractors.

  • Classifiers: Naive Bayes, KNN, Tree, XGBoost, SVM, MLP
  • Feature extractors: Praat, Opensmile, openXBOW BoAW, TRILL embeddings, Wav2vec2 embeddings, audModel embeddings, ...
  • Feature scaling
  • Label encoding
  • Binning (continuous to categorical)
  • Online demo interface for trained models

Here's a rough UML-like sketch of the framework (and here's the real one done with pyreverse). sketch

Currently, the following linear classifiers are implemented (integrated from sklearn):

  • SVM, SVR, XGB, XGR, Tree, Tree_regressor, KNN, KNN_regressor, NaiveBayes, GMM and the following ANNs (artificial neural networks)
  • MLP (multi-layer perceptron), CNN (convolutional neural network)

Here's an animation that shows the progress of classification done with nkululeko

License

Nkululeko can be used under the MIT license

Contributing

Contributions are welcome and encouraged. To learn more about how to contribute to nkululeko please refer to the Contributing guidelines

Citing

If you use it, please mention the Nkululeko paper

F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schuller: Nkululeko: A Tool For Rapid Speaker Characteristics Detection, Proc. Proc. LREC, 2022

@inproceedings{Burkhardt:lrec2022,
   title = {Nkululeko: A Tool For Rapid Speaker Characteristics Detection},
   author = {Felix Burkhardt and Johannes Wagner and Hagen Wierstorf and Florian Eyben and Björn Schuller},
   isbn = {9791095546726},
   journal = {2022 Language Resources and Evaluation Conference, LREC 2022},
   keywords = {machine learning,speaker characteristics,tools},
   pages = {1925-1932},
   publisher = {European Language Resources Association (ELRA)},
   year = {2022},
}

Changelog

Version 0.93.0

  • integrated pyannote for speaker prediction for predict module

Version 0.92.2

  • added some output to automatic speaker id

Version 0.92.1

  • added a speaker plot to pyannote results

Version 0.92.0

  • added first version of automatic speaker prediction for segment module

Version 0.91.3

  • some additions for robustness

Version 0.91.2

  • making lint work by excluding constants from check

Version 0.91.1

  • minor refactoring in ensemble module

Version 0.91.0

  • fixed duration display in segmentation
  • added possibility to use original segmentations (without max. duration)

Version 0.90.4

  • added plot format for multidb

Version 0.90.3

  • refactorings and documentations

Version 0.90.2

  • added probability output to finetuning classification models
  • switched path to prob. output from "store" to "results"

Version 0.90.1

  • Add balancing for finetune and update data README

Version 0.90.0

  • augmentation can now be done without target
  • random splicing params configurable
  • made kde default for plot continous/categorical plots

Version 0.89.2

  • fix shap value calculation

Version 0.89.1

  • print and save result of feature importance

Version 0.89.0

  • added Roc plots and classification report on Debug

Version 0.88.12

  • added n_jobs for sklearn processing
  • re_named num_workers n_jobs

Version 0.88.11

  • removed hack in Praat script

Version 0.88.10

  • SVM C val defaults to 1
  • fixed agender_agender naming bug

Version 0.88.9

  • added performance_weighted ensemble

Version 0.88.8

  • some cosmetics

Version 0.88.7

  • added use_splits for multidb

Version 0.88.6

  • added test speaker assign

Version 0.88.5

  • add a unique name to the uncertainty plot
  • fix error in speaker embedding (still need speechbrain < 1.0)
  • add get_target_name function in util

Version 0.88.4

  • added more ensemble methods, e.g. based on uncertainty

Version 0.88.3

  • fixed bug in false uncertainty estimation
  • changed demo live recording

Version 0.88.2

  • changed combine speaker results to show speakers not samples

Version 0.88.1

  • added obligatory scatter plot for regression

Version 0.88.0

  • added ensemble late fusion and AST features

Version 0.87.0

  • added class probability output and uncertainty analysis

Version 0.86.8

  • handle single feature sets as strings in the config

Version 0.86.7

  • handles now audformat tables where the target is in a file index

Version 0.86.6

  • now best (not last) result is shown at end

Version 0.86.5

  • fix audio path detection in data csv import

Version 0.86.4

  • add finetuning to the demo module

Version 0.86.3

  • bugfixed: nan in finetuned model and double saving
  • import features now get multiindex automatically

Version 0.86.2

  • plots epoch progression for finetuned models now

Version 0.86.1

  • functionality to push to hub
  • fixed bug that prevented wavlm finetuning

Version 0.86.0

  • added regression to finetuning
  • added other transformer models to finetuning
  • added output the train/dev features sets actually used by the model

Version 0.85.2

  • added data, and automatic task label detection

Version 0.85.1

  • fixed bug in model_finetuned that label_num was constant 2

Version 0.85.0

  • first version with finetuning wav2vec2 layers

Version 0.84.1

  • made resample independent of config file

Version 0.84.0

  • added SHAP analysis
  • started with finetuning

Version 0.83.3

  • fixed a naming error in trill features that prevented storage of experiment

Version 0.83.2

  • added default cuda if present and not stated

Version 0.83.1

  • add test module to nkuluflag

Version 0.83.0

  • test module now prints out reports

Version 0.82.4

  • fixed bug in wavlm

Version 0.82.3

  • fixed another audformat peculiarity to interprete time values as nanoseconds

Version 0.82.2

  • fixed audformat peculiarity that dataframes can have only one column

Version 0.82.1

  • Add more test for GC action

Version 0.82.0

  • added nkuluflag module

Version 0.81.7

  • bugfixes
  • added whisper feature extractor

Version 0.81.6

  • updated documentation
  • updated crema-d
  • updated tests

Version 0.81.5

  • added sex=gender for speaker mappings

Version 0.81.4

  • fixed bug in demo module
  • removed [MODEL] save

Version 0.81.3

  • added confidence intervals to result reporting

Version 0.81.2

  • added a parselmouth.Praat error if pitch out of range
  • changed file path for demo_predictor

Version 0.81.1

  • fixed bugs in demo module
  • made kernel for SVM/SVR configurable

Version 0.81.0

  • added test selection to test module

Version 0.80.4

  • added test-file folder to demo file lists

Version 0.80.3

  • made sounddevice use optional as Portaudio library causes difficulties

Version 0.80.2

  • fixed bug that caused clash with GPU/CPU use

Version 0.80.1

  • added support for string value in import_features
  • added support for multiple extra training databases when doing multi-db experiments

Version 0.80.0

  • fixed bug no feature import
  • add support for multiple import feature files

Version 0.79.5

  • fixed bug on demo without in- or output
  • fixed bug that demo with DL feature extractors did not work

Version 0.79.4

  • added functionality in demo for regression

Version 0.79.3

  • fixed bug that test module did not work
  • fixed bug that demo module did not work for ANNs
  • added csv output for demo mode and file lists

Version 0.79.2

  • fixed bug and report number of epochs for early stopping

Version 0.79.1

  • root directory does not have to end with /

Version 0.79.0

  • added extra_train for multidb experiment

Version 0.78.2

  • added transformer layer selection for wav2vec2
  • removed best_model and epoch progression for non-DL models

Version 0.78.1

  • added evaluation loss

Version 0.78.0

  • added 3-d scatter plots
  • removed epoch-plots if epoch_num=1

Version 0.77.14

  • fixed bug preventing bin scaling to work

Version 0.77.13

  • added bins scaler

Version 0.77.12

  • fixed bug with scatter plots for numeric targets
  • made type of numeric target distributions selectable, default "hist"

Version 0.77.11

  • added simple target distribution plots

Version 0.77.10

  • show the best and not the last result for multidb

Version 0.77.9

  • added results text for multidb

Version 0.77.8

  • added caption to multidb heatmap
  • renamed datasets to databases in multidb

Version 0.77.7

  • added multidb module

Version 0.77.6

  • added functions to call modules with config file path directly

Version 0.77.5

  • fixed augmentation bug for python version 10

Version 0.77.4

  • made traditional augmentations (audiomentation module) configurable

Version 0.77.3

  • added augment and train interface

Version 0.77.2

  • added models for features importance computation

Version 0.77.1

  • added permutation algorithm to compute feature importance
  • shifted util.py to utils

Version 0.77.0

  • added more latex report output
  • got splitutils from a package

Version 0.76.0

  • added possibility to aggregate feature importance models

Version 0.75.0

  • added max val for reversing
  • added xgb for feature importance

Version 0.74.6

  • added standard Wav2vec2 model

Version 0.74.5

  • added praat feature extractor for one sample

Version 0.74.4

  • fixed bug combining augmentations

Version 0.74.3

  • audiomentations interface changed

Version 0.74.2

  • combined augmentation methods

Version 0.74.1

  • fixed various bugs with augmentation

Version 0.74.0

  • added patience (early stopping)
  • added MAE loss and measure

Version 0.73.0

  • added reverse and scale arguments to target variable
  • also, the data store can now be csv

Version 0.72.0

  • worked over explore value counts section
  • added bin_reals for all columns

Version 0.71.4

  • automatic epoch reset if not ANN
  • scatter plots now show a regression line

Version 0.71.3

  • enabled scatter plots for all variables

Version 0.71.2

  • enabled scatter plots for continuous labels

Version 0.71.1

  • made a wav2vec default
  • renamed praat features, ommiting spaces
  • fixed plot distribution bugs
  • added feature plots for continuous targets

Version 0.71.0

  • added explore visuals.
  • all columns from databases should now be usable

Version 0.70.0

  • added imb_learn balancing of training set

Version 0.69.0

  • added CNN model and melspec extractor

Version 0.68.4

  • bugfix: got_gender was uncorrectly set

Version 0.68.3

  • Feinberg Praat scripts ignore error and log filename

Version 0.68.2

  • column names in datasets are now configurable

Version 0.68.1

  • added error message on file to praat extraction

Version 0.68.0

  • added stratification framework for split balancing

Version 0.67.0

  • added first version of spotlight integration

Version 0.66.13

  • small changes related to github worker

Version 0.66.12

  • fixed bug that prevented Praat features to be selected

Version 0.66.11

  • removed torch from automatic install. depends on cpu/gpu machine

Version 0.66.10

  • Removed print statements from feats_wav2vec2

Version 0.66.9

  • Version that should install without requiring opensmile which seems not to be supported by all Apple processors (arm CPU (Apple M1))

Version 0.66.8

  • forgot init.py in reporting module

Version 0.66.7

  • minor changes to experiment class

Version 0.66.6

  • minor cosmetics

Version 0.66.5

  • Latex report now with images

Version 0.66.4

  • Pypi version mixup

Version 0.66.3

  • made path to PDF output relative to experiment root

Version 0.66.2

  • enabled data-pacthes with quotes
  • enabled missing category labels
  • used tqdm for progress display

Version 0.66.1

  • start on the latex report framework

Version 0.66.0

  • added speechbrain speakerID embeddings

Version 0.65.9

  • added a filter that ensures that the labels have the same size as the features

Version 0.65.8

  • changed default behaviour of resampler to "keep original files"

Version 0.65.7

  • more databases and force wav while resampling

Version 0.65.6

  • minor catch for seaborn in plots

Version 0.65.5

  • added fill_na in plot effect size

Version 0.65.4

  • added datasets to distribution
  • changes in wav2vec2

Version 0.65.3

  • various bugfixes

Version 0.65.2

  • fixed bug in dataset.csv that prevented correct paths for relative files
  • fixed bug in export module concerning new file directory

Version 0.65.1

  • small enhancements with transformer features

Version 0.65.0

  • introduced export module

Version 0.64.4

  • added num_speakers for reloaded data
  • re-formatted all with black

Version 0.64.3

  • added number of speakers shown after data load

Version 0.64.2

  • added init.py for submodules

Version 0.64.1

  • fix error on csv

Version 0.64.0

  • added bin_reals
  • added statistics for effect size and correlation to plots

Version 0.63.4

  • fixed bug in split selection

Version 0.63.3

  • Introduced data.audio_path

Version 0.63.2

  • re-introduced min and max_length for silero segmenatation

Version 0.63.1

  • fixed bug in resample

Version 0.63.0

  • added wavlm model
  • added error on filename for models

Version 0.62.1

  • added min and max_length for silero segmenatation

Version 0.62.0

  • fixed segment silero bug
  • added all Wav2vec2 models
  • added resampler module
  • added error on file for embeddings

Version 0.61.0

  • added HUBERT embeddings

Version 0.60.0

  • some bugfixes
  • new package structure
  • fixed wav2vec2 bugs
  • removed "cross_data" strategy

Version 0.59.1

  • bugfix, after fresh install, it seems some libraries have changed
  • added no_warnings
  • changed print() to util.debug()
  • added progress to opensmile extract

Version 0.59.0

  • introduced SQUIM features
  • added SDR predict
  • added STOI predict

Version 0.58.0

  • added dominance predict
  • added MOS predict
  • added PESQ predict

Version 0.57.0

  • renamed autopredict predict
  • added arousal autopredict
  • added valence autopredict

Version 0.56.0

  • added autopredict module
  • added snr as feature extractor
  • added gender autopredict
  • added age autopredict
  • added snr autopredict

Version 0.55.1

  • changed error message in plot class

Version 0.55.0

  • added segmentation module

Version 0.54.0

  • added audeering public age and gender model embeddings and age and gender predictions

Version 0.53.0

  • added file checks: size in bytes and voice activity detection with silero

Version 0.52.1

  • bugfix: min/max duration_of_sample was not working

Version 0.52.0

  • added flexible value distribution plots

Version 0.51.0

  • added datafilter

Version 0.50.1

  • added caller information for debug and error messages in Util

Version 0.50.0

  • removed loso and added pre-selected logo (leave-one-group-out), aka folds

Version 0.49.1

  • bugfix: samples selection for augmentation didn't work

Version 0.49.0

  • added random-splicing

Version 0.48.1

  • bugfix: database object was not loaded when dataframe was reused

Version 0.48.0

  • enabled specific feature selection for praat and opensmile features

Version 0.47.1

  • enabled feature storage format csv for opensmile features

Version 0.47.0

  • added praat speech rate features

Version 0.46.0

  • added warnings for non-existent parameters
  • added sample selection for scatter plotting

Version 0.45.4

  • added version attribute to setup.cfg

Version 0.45.4

  • added version attribute

Version 0.44.1

Version 0.45.2

  • bugfix: sample_selection in EXPL was required wrongly

Version 0.45.2

  • added sample_selection for sample distribution plots

Version 0.45.1

  • fixed dataframe.append bug

Version 0.45.0

  • added auddim as features
  • added FEATS store_format
  • added device use to feat_audmodel

Version 0.44.1

  • bugfixes

Version 0.44.0

  • added scatter functions: tsne, pca, umap

Version 0.43.7

  • added clap features

Version 0.43.6

  • small bugs

Version 0.43.5

  • because of difficulties with numba and audiomentations importing audiomentations only when augmenting

Version 0.43.4

  • added error when experiment type and predictor don't match

Version 0.43.3

  • fixed further bugs and added augmentation to the test runs

Version 0.43.2

  • fixed a bug when running continuous variable as classification problem

Version 0.43.1

  • fixed test_runs

Version 0.43.0

  • added augmentation module based on audiomentation

Version 0.42.0

  • age labels should now be detected in databases

Version 0.41.0

  • added feature tree plot

Version 0.40.1

  • fixed a bug: additional test database was not label encoded

Version 0.40.0

  • added EXPL section and first functionality
  • added test module (for test databases)

Version 0.39.0

  • added feature distribution plots
  • added plot format

Version 0.38.3

  • added demo mode with list argument

Version 0.38.2

  • fixed a bug concerned with "no_reuse" evaluation

Version 0.38.1

  • demo mode with file argument

Version 0.38.0

  • fixed demo mode

Version 0.37.2

  • mainly replaced pd.append with pd.concat

Version 0.37.1

  • fixed bug preventing praat feature extraction to work

Version 0.37.0

  • fixed bug cvs import not detecting multiindex

Version 0.36.3

  • published as a pypi module

Version 0.36.0

  • added entry nkululeko.py script

Version 0.35.0

  • fixed bug that prevented scaling (normalization)

Version 0.34.2

  • smaller bug fixed concerning the loss_string

Version 0.34.1

  • smaller bug fixes and tried Soft_f1 loss

Version 0.34.0

  • smaller bug fixes and debug ouputs

Version 0.33.0

  • added GMM as a model type

Version 0.32.0

  • added audmodel embeddings as features

Version 0.31.0

  • added models: tree and tree_reg

Version 0.30.0

  • added models: bayes, knn and knn_reg

Version 0.29.2

  • fixed hello world example

Version 0.29.1

  • bug fix for 0.29

Version 0.29.0

  • added a new FeatureExtractor class to import external data

Version 0.28.2

  • removed some Pandas warnings
  • added no_reuse function to database.load()

Version 0.28.1

  • with database.value_counts show only the data that is actually used

Version 0.28.0

  • made "label_data" configuration automatic and added "label_result"

Version 0.27.0

  • added "label_data" configuration to label data with trained model (so now there can be train, dev and test set)

Version 0.26.1

  • Fixed some bugs caused by the multitude of feature sets
  • Added possibilty to distinguish between absolut or relative pathes in csv datasets

Version 0.26.0

  • added the rename_speakers funcionality to prevent identical speaker names in datasets

Version 0.25.1

  • fixed bug that no features were chosen if not selected

Version 0.25.0

  • made selectable features universal for feature sets

Version 0.24.0

  • added multiple feature sets (will simply be concatenated)

Version 0.23.0

  • added selectable features for Praat interface

Version 0.22.0

  • added David R. Feinberg's Praat features, praise also to parselmouth

Version 0.21.0

  • Revoked 0.20.0
  • Added support for only_test = True, to enable later testing of trained models with new test data

Version 0.20.0

  • implemented reuse of trained and saved models

Version 0.19.0

  • added "max_duration_of_sample" for datasets

Version 0.18.6

  • added support for learning and dropout rate as argument

Version 0.18.5

  • added support for epoch number as argument

Version 0.18.4

  • added support for ANN layers as arguments

Version 0.18.3

  • added reuse of test and train file sets
  • added parameter to scale continous target values: target_divide_by

Version 0.18.2

  • added preference of local dataset specs to global ones

Version 0.18.1

  • added regression value display for confusion matrices

Version 0.18.0

  • added leave one speaker group out

Version 0.17.2

  • fixed scaler, added robust

Version 0.17.0

  • Added minimum duration for test samples

Version 0.16.4

  • Added possibility to combine predictions per speaker (with mean or mode function)

Version 0.16.3

  • Added minimal sample length for databases

Version 0.16.2

  • Added k-fold-cross-validation for linear classifiers

Version 0.16.1

  • Added leave-one-speaker-out for linear classifiers

Version 0.16.0

  • Added random sample splits

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nkululeko-0.93.0.tar.gz (175.4 kB view details)

Uploaded Source

Built Distribution

nkululeko-0.93.0-py3-none-any.whl (181.3 kB view details)

Uploaded Python 3

File details

Details for the file nkululeko-0.93.0.tar.gz.

File metadata

  • Download URL: nkululeko-0.93.0.tar.gz
  • Upload date:
  • Size: 175.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for nkululeko-0.93.0.tar.gz
Algorithm Hash digest
SHA256 b54123d9df3d0abcb1f96060717de4658ae72c2d8e01ac4f8e63f086c34ddd48
MD5 e40a406ccb931258a5e1014952f0f06f
BLAKE2b-256 a9b97bed3e1d11231a4e6bf20e3dba29ec6614051b8ec78d801fc01dbd49611d

See more details on using hashes here.

File details

Details for the file nkululeko-0.93.0-py3-none-any.whl.

File metadata

  • Download URL: nkululeko-0.93.0-py3-none-any.whl
  • Upload date:
  • Size: 181.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for nkululeko-0.93.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4f52cfb91da153890abddd4b48f8df048cc3c99d86a2c1727defd07ddded6219
MD5 edce2df362a69dab1baccb5542a09970
BLAKE2b-256 7d5034af39c968a37c494e9e38a4ff5d620fa0e3479803fa1eb5dbecf048c5f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page