Skip to main content

NLCPy is a package for accelerating performance of Python scripts using NumPy on SX-Aurora TSUBASA.

Project description

NLCPy_banner

NLCPy : NumPy-like API accelerated with SX-Aurora TSUBASA

GitHub license Downloads Python Versions

NLCPy is a library for accelerating performance of Python scripts using NumPy on SX-Aurora TSUBASA. Python programmers can use this library on Linux/x86 of SX-Aurora TSUBASA. NLCPy's API is designed based on NumPy's one. The current version provides a subset of NumPy's API.

Requirements

Before the installation, the following components are required to be installed on your x86 Node of SX-Aurora TSUBASA.

  • NEC SDK

    • required NEC C/C++ compiler version: >= 3.3.1
    • required NLC version: >= 2.3.0
  • Alternative VE Offloading (AVEO)

    • If you install NLCpy from wheel, the runtime packages of Alternative VE Offloading(AVEO) are required.

      # yum install veoffload-aveo veoffload-aveorun
      
    • If you install NLCpy from source, the development packages of Alternative VE Offloading(AVEO) are required.

      # yum install veoffload-aveo-devel veoffload-aveorun-devel
      
  • Python - required version: 3.6, 3.7, or 3.8

  • NumPy - required version: >= v1.17

Install from wheel

You can install NLCPy by executing either of following commands.

  • Install from PyPI

    $ pip install nlcpy
    
  • Install from your local computer

    1. Download the wheel package from GitHub.

    2. Put the wheel package to your any directory.

    3. Install the local wheel package via pip command.

      $ pip install <path_to_wheel>
      

The shared objects for Vector Engine, which are included in the wheel package, are compiled and tested by using NEC C/C++ Version 3.3.1 and NumPy v1.19.2.

Install from source (with building)

Before building source files, please install following packages.

$ pip install numpy cython wheel

And, entering these commands in the environment where gcc and ncc commands are available.

$ git clone https://github.com/SX-Aurora/nlcpy.git
$ cd nlcpy
$ pip install .

Documentation

License

The BSD-3-Clause license (see LICENSE file).

NLCPy is derived from NumPy, CuPy, PyVEO, and numpydoc (see LICENSE_DETAIL/LICENSE_DETAIL file).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nlcpy-2.1.0.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

nlcpy-2.1.0-cp38-cp38-manylinux1_x86_64.whl (91.0 MB view details)

Uploaded CPython 3.8

nlcpy-2.1.0-cp37-cp37m-manylinux1_x86_64.whl (89.9 MB view details)

Uploaded CPython 3.7m

nlcpy-2.1.0-cp36-cp36m-manylinux1_x86_64.whl (90.0 MB view details)

Uploaded CPython 3.6m

File details

Details for the file nlcpy-2.1.0.tar.gz.

File metadata

  • Download URL: nlcpy-2.1.0.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for nlcpy-2.1.0.tar.gz
Algorithm Hash digest
SHA256 3b317263d4367b83a00375da70ba6683df67d5b49813e747b02d8925f754142e
MD5 a7c4b42e9546481583a86653354958c1
BLAKE2b-256 da7fb97e48cdf281afac865b132ab7c05ff1a4691d52ca1b20cf0633c5e0b4c2

See more details on using hashes here.

File details

Details for the file nlcpy-2.1.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: nlcpy-2.1.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 91.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for nlcpy-2.1.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4e8e87b88c687d4cb3538ac3f4c8147729a3ff4be30f4df2f248630ddf0178a0
MD5 e9939409582713914a82d5da672dde87
BLAKE2b-256 4c2ddeea336f9173bfcdae2e0f5da1b1771f53a4794a298f3cf091da4c23a500

See more details on using hashes here.

File details

Details for the file nlcpy-2.1.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nlcpy-2.1.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 89.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for nlcpy-2.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 19abfcdedea542f1947f2b6903ea0658de48324957840ec68efbfdee365e27fc
MD5 3790bc59538f4fff23614ca4294d5f20
BLAKE2b-256 8edd45eddf9f401de9f842f55b0f81ada31bc0e3e76a15ce688decf6c4225398

See more details on using hashes here.

File details

Details for the file nlcpy-2.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nlcpy-2.1.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 90.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for nlcpy-2.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e31f13aa29329c4e7b16bc559bf973da3d4c2c1054eeb11068167a98abfd661f
MD5 96f1d45e40c64a319e5bc8f12e21afeb
BLAKE2b-256 209cf9d4273cf1c2829bd88bd1caea2032a07ce164a06c81cb80889c79746cc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page