Skip to main content

NMJ Analyzer

Project description

NMJ_Analyser

The code was created using python 3.7 and the following version of packages

Requirements

  • scipy 1.5.3
  • Pillow 7.2.0
  • numpy 1.19.1
  • pandas 1.1.0
  • nibabel 3.1.1

In addition, the following modules are imported

  • glob
  • os
  • argparse
  • sys

Performs analysis of NMJ data

Usage

The NMJ Analyser takes as input directories where jpg files have been stored

For each subject, the input is presented as SUBJ/JPEG/*jpg The ..... files must contain the keyword red or RED The ..... files must contain the keyword green or GREEN The slices should ordered numerically ex Mouse1_GREEN_0001.jpg.... Mouse1_GREEN_0010.jpg

The following parameters are given to the system:

  • -p regular expression of the subject path
  • -dx planar resolution
  • -dz slice thickness
  • -t threshold for voxels to be considered as positives

Output

For each subject the following parameters are calculated for each RED connected component and intersection of GREEN on RED component

RegionProperties

  • 'centre of mass': (self.centre_of_mass, ['CoMx', 'CoMy', 'CoMz']),
  • 'centre_abs': (self.centre_abs, ['Truex, Truey, Truez']),
  • 'volume': (self.volume, ['NVoxels', 'NVolume']),
  • 'fragmentation': (self.fragmentation, ['Fragmentation']),
  • 'mean_intensity': (self.mean_int, ['MeanIntensity']),
  • 'surface': (self.surface, ['NSurface', 'Nfaces_surf', 'NSurf_ext', 'Nfaces_ext']),
  • 'surface_dil': (self.surface_dil, ['surf_dil', 'surf_ero']),
  • 'surface volume ratio': (self.sav, ['sav_dil', 'sav_ero']),
  • 'compactness': (self.compactness, ['CompactNumbDil' ]),
  • 'eigen': (self.eigen, ['eigenvalues']),
  • 'std': (self.std_values, ['std']),
  • 'quantiles': (self.quantile_values, ['quantiles']),
  • 'bounds': (self.bounds, ['bounds']),
  • 'cc': (self.connect_cc, ['N_CC']),
  • 'cc_dist': (self.dist_cc, ['MeanDistCC']),
  • 'cc_size': (self.cc_size, ['MinSize', 'MaxSize', 'MeanSize']),
  • 'max_extent': (self.max_extent, ['MaxExtent']),
  • 'shape_factor': (self.shape_factor, ['ShapeFactor', 'shapefactor_surfcount']),
  • 'skeleton_length': (self.skeleton_length, ['SkeletonLength'])

Comparison Properties

  • 'green volume': (self.n_pos_ref, 'Volume_(Green)'),
  • 'red volume': (self.n_pos_seg, 'Volume_(Red)'),
  • 'n_intersection': (self.n_intersection, 'Intersection'),
  • 'n_union': (self.n_union, 'Union'),
  • 'IoU': Intersection of union
  • 'coverage': Overlap
  • 'vol_diff': Volume difference
  • 'ave_dist': Average distance
  • 'haus_dist': Hausdorff distance
  • 'haus_dist95': 95% HD
  • 'com_dist': distance between centre of mass
  • 'com_ref': centre of mass RED
  • 'com_seg': centre of mass GREEN

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nmjanalyzer-0.0.3.tar.gz (13.6 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page