Chemical shift predictor
Project description
Graph neural network for predicting NMR chemical shifts
This library is the code and a pre-trained model to predict NMR chemical shifts from protein structures and organic molecules. It relies on the nmrdata package which includes embeddings and NMR parameters.
Install
Install using pip
pip install nmrgnn
Colab
To use this package without installing, use this colab
Command Line Usage
Available commands are
nmrgnn eval-struct
to predict chemical shifts of structure via MDAnalysis library as coordinate readernmrgnn train
to train a modelnmrgnn hyper
to tune hyperparametersnmrgnn eval-tfrecords
to evaluate model on records in format fromnmrdata
package
Predict NMR Chemical Shfits
Note: This model is trained on models with no solvent, so remove that before use. For small molecules, the model was trained mostly on water solutions. You should only expect agreement in relative chemical shifts between atoms depending on your solvent and reference.
To predict NMR chemical shifts via the MDAnalysis library as a reader:
nmrgnn eval-struct [struct-file] [output-csv]
where struct-file
could be a pdb file or equivalent. Example:
nmrgnn eval-struct 108M.pdb 108M-predicted.csv
Warning about Peaks
If you receive a warning about peaks being poor, you likely have no hydrogens in your protein. You can add using online tools or use these commands to fix quickly by using OpenMM
conda install -y -c omnia openmm
pip install nmrdata[parse]@git+git://github.com/ur-whitelab/nmrgnn.git
nmrparse clean-pdb [your-pdb] [your-pdb]-H.pdb
Library Usage
Available functions are
load_model
to load the included pre-trained model or specify a path to a trained modeluniverse2graph
to convert an MDAnalysis universe into a tuple of atoms, neighbor list, edges, inverse_degree.check_peaks
to estimate validity of predicted peaks
The example below predicts peaks and estimates (True/False
) if the peaks are valid. Examples of why peaks are
not valid are that the elements are not inlcuded in training data (e.g., oxygen shifts) or unusual chemistries or
you forgot to remove solvent.
import MDAnalysis as md
import nmrgnn
model = nmrgnn.load_model()
u = md.Universe('108M.pdb')
g = nmrgnn.universe2graph(u)
peaks = model(g)
# check_peaks only uses first element of tuple (atom identities)
confident = nmrgnn.check_peaks(g[0], peaks)
You should not trust peaks coming from model without checking
Analyzing Trajectories
Here is an example for analzying a trajectory
import MDAnalysis as md
import nmrgnn
model = nmrgnn.load_model()
u = md.Universe(PATH_TO_FILES)
for ts in u.trajectory:
x = nmrgnn.universe2graph(u)
peaks = model(x)
nmrgnn.check_peaks(x[0], peaks)
# do something with peaks
....
Citation
Please cite Predicting Chemical Shifts with Graph Neural Networks
@article{yang2021predicting,
title={Predicting Chemical Shifts with Graph Neural Networks},
author={Yang, Ziyue and Chakraborty, Maghesree and White, Andrew D},
journal={Chemical Science},
year={2021},
publisher={Royal Society of Chemistry}
}
Model Performance
Here is the included model performance on proteins (P
prefix) and organic molecules (Mol
prefix). r
is correlation coefficient and rmsd
is root mean square deviation. These results vary from paper values because they are evaluated on whole proteins instead of 256 atom fragments.
N | baseline | |
---|---|---|
Mol-H-r | 307 | 0.9591749434360993 |
Mol-H-rmsd | 307 | 0.39710393617916234 |
P-C-r | 6701 | 0.864163 |
P-H-r | 7747 | 0.72265 |
P-N-r | 7640 | 0.890842 |
P-CA-r | 8305 | 0.97374 |
P-CB-r | 6827 | 0.990706 |
P-CD-r | 739 | 0.996123 |
P-CD1-r | 961 | 0.999515 |
P-CD2-r | 609 | 0.999223 |
P-CE-r | 340 | 0.991736 |
P-CE1-r | 261 | 0.958121 |
P-CE2-r | 173 | 0.943739 |
P-CE3-r | 37 | -0.215088 |
P-CG-r | 1674 | 0.998763 |
P-CG1-r | 589 | 0.93124 |
P-CG2-r | 839 | 0.829016 |
P-CH2-r | 43 | 0.158363 |
P-CZ-r | 125 | 0.984575 |
P-CZ2-r | 45 | 0.311805 |
P-CZ3-r | 37 | 0.164961 |
P-HA-r | 5565 | 0.839377 |
P-HA2-r | 462 | 0.495514 |
P-HA3-r | 449 | 0.262298 |
P-HB-r | 960 | 0.958713 |
P-HB2-r | 3427 | 0.901358 |
P-HB3-r | 3255 | 0.901234 |
P-HD1-r | 383 | 0.44733 |
P-HD11-r | 753 | 0.615756 |
P-HD12-r | 753 | 0.585852 |
P-HD13-r | 753 | 0.609181 |
P-HD2-r | 1043 | 0.988991 |
P-HD21-r | 428 | 0.617599 |
P-HD22-r | 428 | 0.651927 |
P-HD23-r | 428 | 0.605888 |
P-HD3-r | 637 | 0.95089 |
P-HE-r | 93 | 0.396258 |
P-HE1-r | 413 | 0.879142 |
P-HE2-r | 561 | 0.98963 |
P-HE3-r | 293 | 0.985685 |
P-HG-r | 389 | 0.810401 |
P-HG1-r | 11 | 0.0653286 |
P-HG11-r | 350 | 0.572609 |
P-HG12-r | 350 | 0.498696 |
P-HG13-r | 350 | 0.558426 |
P-HG2-r | 1317 | 0.867619 |
P-HG21-r | 936 | 0.689592 |
P-HG22-r | 936 | 0.674086 |
P-HG23-r | 936 | 0.662057 |
P-HG3-r | 1200 | 0.856177 |
P-HH-r | 1 | nan |
P-HH2-r | 51 | 0.217372 |
P-HZ-r | 134 | 0.407285 |
P-HZ2-r | 54 | 0.419415 |
P-HZ3-r | 45 | 0.318577 |
P-ND1-r | 9 | 0.184443 |
P-ND2-r | 173 | 0.320299 |
P-NE-r | 88 | 0.0135033 |
P-NE1-r | 64 | 0.0998792 |
P-NE2-r | 149 | 0.972614 |
P-NH1-r | 3 | -0.914066 |
P-NH2-r | 3 | -0.276087 |
P-NZ-r | 1 | nan |
P-C-rmsd | 6701 | 1.22819 |
P-H-rmsd | 7747 | 0.279766 |
P-N-rmsd | 7640 | 6.65505 |
P-CA-rmsd | 8305 | 1.3298 |
P-CB-rmsd | 6827 | 3.10571 |
P-CD-rmsd | 739 | 10.3192 |
P-CD1-rmsd | 961 | 2.74597 |
P-CD2-rmsd | 609 | 4.35399 |
P-CE-rmsd | 340 | 1.14623 |
P-CE1-rmsd | 261 | 4.69154 |
P-CE2-rmsd | 173 | 4.82229 |
P-CE3-rmsd | 37 | 3.0327 |
P-CG-rmsd | 1674 | 1.63828 |
P-CG1-rmsd | 589 | 1.558 |
P-CG2-rmsd | 839 | 1.87753 |
P-CH2-rmsd | 43 | 1.95861 |
P-CZ-rmsd | 125 | 4.32496 |
P-CZ2-rmsd | 45 | 1.22984 |
P-CZ3-rmsd | 37 | 1.99567 |
P-HA-rmsd | 5565 | 0.0903255 |
P-HA2-rmsd | 462 | 0.119584 |
P-HA3-rmsd | 449 | 0.234069 |
P-HB-rmsd | 960 | 0.103812 |
P-HB2-rmsd | 3427 | 0.10552 |
P-HB3-rmsd | 3255 | 0.117287 |
P-HD1-rmsd | 383 | 0.114696 |
P-HD11-rmsd | 753 | 0.0699893 |
P-HD12-rmsd | 753 | 0.0744762 |
P-HD13-rmsd | 753 | 0.0711484 |
P-HD2-rmsd | 1043 | 0.105893 |
P-HD21-rmsd | 428 | 0.0737762 |
P-HD22-rmsd | 428 | 0.0689306 |
P-HD23-rmsd | 428 | 0.0764191 |
P-HD3-rmsd | 637 | 0.0869007 |
P-HE-rmsd | 93 | 0.422132 |
P-HE1-rmsd | 413 | 0.376196 |
P-HE2-rmsd | 561 | 0.0861489 |
P-HE3-rmsd | 293 | 0.0855213 |
P-HG-rmsd | 389 | 0.118694 |
P-HG1-rmsd | 11 | 10.3704 |
P-HG11-rmsd | 350 | 0.0504736 |
P-HG12-rmsd | 350 | 0.0552385 |
P-HG13-rmsd | 350 | 0.0516929 |
P-HG2-rmsd | 1317 | 0.0654069 |
P-HG21-rmsd | 936 | 0.0634577 |
P-HG22-rmsd | 936 | 0.0650697 |
P-HG23-rmsd | 936 | 0.0679991 |
P-HG3-rmsd | 1200 | 0.0775636 |
P-HH-rmsd | 1 | 4.07231 |
P-HH2-rmsd | 51 | 0.0862706 |
P-HZ-rmsd | 134 | 0.147387 |
P-HZ2-rmsd | 54 | 0.13507 |
P-HZ3-rmsd | 45 | 0.083249 |
P-ND1-rmsd | 9 | 1576.13 |
P-ND2-rmsd | 173 | 6.56618 |
P-NE-rmsd | 88 | 231.589 |
P-NE1-rmsd | 64 | 4.51713 |
P-NE2-rmsd | 149 | 13.9975 |
P-NH1-rmsd | 3 | 5.76985 |
P-NH2-rmsd | 3 | 0.91028 |
P-NZ-rmsd | 1 | 165.069 |
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nmrgnn-0.5.tar.gz
.
File metadata
- Download URL: nmrgnn-0.5.tar.gz
- Upload date:
- Size: 19.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65ea3ad5e00548546c3145ff3e9d303416642fb84c685b5aacf4dc44e71a9409 |
|
MD5 | 777aefbc68ef2ec82459ffa91a2b0b2a |
|
BLAKE2b-256 | 8263ccca9b99d6a762f84ad02d3d368aefbae2f87bf2be38abf07d38c1ccedb5 |
File details
Details for the file nmrgnn-0.5-py3-none-any.whl
.
File metadata
- Download URL: nmrgnn-0.5-py3-none-any.whl
- Upload date:
- Size: 12.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9b9a5821e0dc3ede3ff51890ae1ae58fd9c93c931991a44317d0363b50fc68a8 |
|
MD5 | ed4fcee988e63cf63a8108390b8e1a22 |
|
BLAKE2b-256 | 6c4d96f9ede20eb81b2111b54ca2794ece38543e817d02128b519eb87c690d42 |