Skip to main content

Python bindings for the nod library.

Project description

py-nod

Python 3.8 bindings for the NOD, a library for traversing, dumping, and authoring GameCube and Wii optical disc images.

Usage

Unpacking

import nod

def progress_callback(path, progress):
    if args.verbose:
        print("Extraction {:.0%} Complete; Current node: {}".format(progress, path))

context = nod.ExtractionContext()
context.set_progress_callback(progress_callback)

try:
    disc, is_wii = nod.open_disc_from_image("game.iso")
    data_partition = disc.get_data_partition()
    if not data_partition:
        raise RuntimeError("Could not find a data partition in the disc.")
    data_partition.extract_to_directory("dir_out", context)
except RuntimeError as e:
    raise Exception("Could not extract disc at 'game.iso' to 'dir_out': {}".format(e))

Packing

import nod

if nod.DiscBuilderGCN.calculate_total_size_required("dir_out") is None:
    raise Exception("Image built with given directory would pass the maximum size.")

def fprogress_callback(progress: float, name: str, bytes: int):
    print("\r" + " " * 100, end="")
    print("\r{:.0%} {} {} B".format(progress, name, bytes), flush=True)

disc_builder = nod.DiscBuilderGCN("game.iso", fprogress_callback)
try:
    disc_builder.build_from_directory("dir_out")    
except RuntimeError as e:
    raise Exception("Failure building the image: {}".format(e))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nod-1.9.3.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

nod-1.9.3-cp312-cp312-win_amd64.whl (11.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

nod-1.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nod-1.9.3-cp312-cp312-macosx_11_0_arm64.whl (478.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

nod-1.9.3-cp312-cp312-macosx_10_9_x86_64.whl (507.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

nod-1.9.3-cp311-cp311-win_amd64.whl (11.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

nod-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nod-1.9.3-cp311-cp311-macosx_11_0_arm64.whl (478.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nod-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl (507.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nod-1.9.3-cp310-cp310-win_amd64.whl (11.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

nod-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nod-1.9.3-cp310-cp310-macosx_11_0_arm64.whl (477.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nod-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl (506.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nod-1.9.3-cp39-cp39-win_amd64.whl (11.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

nod-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nod-1.9.3-cp39-cp39-macosx_11_0_arm64.whl (478.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

nod-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl (507.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nod-1.9.3-cp38-cp38-win_amd64.whl (11.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

nod-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nod-1.9.3-cp38-cp38-macosx_11_0_arm64.whl (313.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

nod-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl (508.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file nod-1.9.3.tar.gz.

File metadata

  • Download URL: nod-1.9.3.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for nod-1.9.3.tar.gz
Algorithm Hash digest
SHA256 b17ccf8daa088ef4f8e87c3125fa82fae0a68612b0da44bf3a282a93f67c3a04
MD5 8e76d91283cee8b6993adcac2c0766b1
BLAKE2b-256 9dbacb919497683ad78632985b4b3754a6d25fec8d4a2ac61222e0638e8633e8

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 11.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for nod-1.9.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e91602a43ad39df7ce44577b91f4f82d8f7b95e27c94e32262aa1ac7997b78a8
MD5 f6bcdfc5f9bb60bae0d5ced9b72f8f2a
BLAKE2b-256 e4a524d17aed001e7128e4d73eac872bddf234c6c059b3253c4028b9217e38bd

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c87a033cb25be33f2b5de41cba720d3e529faa9c409bf9ca94427c602c5a215
MD5 214a93bd4dc5fd38a5ca8d7ac603b7d2
BLAKE2b-256 da6ce8e9fc82fcfdfbc09ccdd52ac57254346638e45d8f87f00633053b5f8727

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af700d544286454adaa7aeea62f2d64e363aacc8878e8da2edde102f74ea7040
MD5 5ff863cfc3e2e3470ef90609d8d3be40
BLAKE2b-256 d3ddba4b8665971bab7eb0b13230730aaaf3f2ec5275391c1a258a1e01816774

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c375ad9d2712266a18a2dcbd97a396b446af06a3c82ecbc850aa25cba8a979c8
MD5 bcd06244cf46b892a39b793d31cb59c5
BLAKE2b-256 ec6f37399d996af95181594c03098e8930e824d40cfa0f7cf44200c3e75da59e

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 11.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for nod-1.9.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 90e7a0021b0dcbc6132605cec993bb539904062a4abf450edd6fc19266bbd9e3
MD5 67043cd60f05a4f6afbcfa59463dfea6
BLAKE2b-256 d19ed230bd48b49d64bb085823790e52442625a4c2532afb9b8d278b44c35642

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 221144e18a1d0d016ed3a2c098e5310437659ae85444b626f92af80456763783
MD5 1d931ad42c5339a2cb5cabaaeaf0470b
BLAKE2b-256 0992ea67a0b0e2cb0b27b66718c568533521eb5ae276878598d12fa1f4d6618c

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3d6b7f87ff7b749a61409e7d31f4a2948562380198fe5c9f9bfbb2337d8167c
MD5 2935ecaeff2b6c1b5c9a2ad4cecfdee9
BLAKE2b-256 e86a3073e9ebd8aae661588b7627b6d03924d1a9a3a000f3165ee2a8e5cb1af0

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e2db7820e0cc2187d7340f5b4da5fb3729dbdc4a7c23f88f0da5129118985f3
MD5 d878f61cebd9ed3f9bfaa04a5e0cd2f7
BLAKE2b-256 8d2f9626892b860bc1fdccdc1d212ae362f462a1adc0477e5698fe8e5d05f578

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 11.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for nod-1.9.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cbf2fde892fec82268b7f3ed679301a2d9ab369c27319d4cd85bf067db574e8a
MD5 a488218ac244de87d1b16d6cce0c7c63
BLAKE2b-256 65f5f57bcef95b1d95adde836f1f67dd061791adf531e6aa160440d863519d37

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18c41b6ad8c5fd9029c682f7825e200bb87075f2793f6cd67d4024ed4912c9f5
MD5 0b0f2cde04d7521c33e19e4b9f700e88
BLAKE2b-256 a09474663a8e401e78e30784ec69b397cc8ee3da058e2da6645e008da165ef4b

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5056234da350aad7d6c29c373af9bc49d6789bed67fa52bd2adbbf317d3f5e3
MD5 5fb0be53e141a7208088f300bcd5afcc
BLAKE2b-256 66a30ac7dc6028abe7b4d69d9a7e822b6e5dffbab6f562fff9ac7882ef8654a3

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d5569ef2f646d3fe93a56cbda4a2edcccce3c1f701c6db5fff8f65a15a33674
MD5 4f75b9e161ac332b111bb9960025fac4
BLAKE2b-256 88a002122c0800c8ee44f074213cba3957f8505f059992ff25cc52d46dedd49e

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 11.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for nod-1.9.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3483d7c55d17400f59873aad249edce45079dad71ca79693502fa331dba9ebc0
MD5 8467c67f26548fc1315f19b9e9e7fb6e
BLAKE2b-256 d1f37e640f4da06a224c0ff4e55f09c8bfe50eb1164541bec698c426bdab068c

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e611045be2e9df2161cda58911306c395135e9653c08acb140a267a62356b8f
MD5 c3e8e3c49ab91928d79de4edf5a3b5f5
BLAKE2b-256 aab2cac87f7a8b80e30b4884a3fb28bb1404fe258d39f2f4ce76f4f29151a21e

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d633282b65b1a7727bf441b942dde1c7ff6671b891ea2ba2f5c25df9ca1ba6c
MD5 8692b1b17f5b5402fed64413fbfcf2c0
BLAKE2b-256 d5bea75bfe1c1efca6224f354a36699e670a07e53fdba62c3bd35f5cb4080e0e

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0522ddcc895d84b17570f69c47a29c39023f4addf10b8f37aa6fd2a03f3f8d42
MD5 a5cb12f939f4b29744e333e887a20848
BLAKE2b-256 45c3ae71bb699c6d8e3fba8b7784744d87550afba60c55755c22ef132ba7a107

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for nod-1.9.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 077c2a87a3cbadb6cd059f9b4ca7abdea26c0b5b37d2c8299a11f144408f13c0
MD5 6e44bbfa56c2b4a9d8f93fc051c83a88
BLAKE2b-256 c26a662d872bc9bbf1ffde21e3d476ee4a2c9f1bcc43b36ed695b03f7b506f31

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4aa287a0124304d2839c15df701873cbcd9b8056c2ea895529907bc6b4b52b9
MD5 1d4c56da66b6105646f8ad5d1603119d
BLAKE2b-256 1b8fe37922165c38a26bc123319b31fdd8eb8b55e1ae325e63c829b4223466d9

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d925fe34e895be7396b4748d3eb21f34d4520b55928c94deea4f45ec4b8b0e1f
MD5 9b01e714a387c3511e435535484f4dea
BLAKE2b-256 4da3198a97c4f92675e34607c9826d4d2d96ed8ddf6c10125f4b43faae1796ab

See more details on using hashes here.

File details

Details for the file nod-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 474a37feef026e19482ff2fbbb75c09b230afe60de6bcf85dd6e6e9ca2975730
MD5 d019706a5b97b0081d5f48f8bacba5b1
BLAKE2b-256 1e0870cf469b16a532c965986af10af4fe132e3990d169044d061bad6aac5b8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page