Skip to main content

novita SDK for Python

Project description

novita Python SDK

this SDK is based on the official API documentation

join our discord server for help

Installation

pip install novita-client

Examples

Code Examples

cleanup

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.cleanup(
    image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    mask="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
)

base64_to_image(res.image_file).save("./cleanup.png")

controlnet

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import os

from novita_client import NovitaClient, Img2ImgV3Request, Img2ImgV3ControlNetUnit, ControlnetUnit, Samplers, Img2ImgV3Embedding
from novita_client.utils import base64_to_image


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.img2img_v3(
    input_image="https://img.freepik.com/premium-photo/close-up-dogs-face-with-big-smile-generative-ai_900101-62851.jpg",
    model_name="dreamshaper_8_93211.safetensors",
    prompt="a cute dog, masterpiece, best quality",
    sampler_name=Samplers.DPMPP_M_KARRAS,
    width=512,
    height=512,
    steps=30,
    strength=1.0,
    controlnet_units=[
        Img2ImgV3ControlNetUnit(
            # image_base64="https://img.freepik.com/premium-photo/close-up-dogs-face-with-big-smile-generative-ai_900101-62851.jpg",
            image_base64="examples/fixtures/qrcode.png",
            model_name="control_v1p_sd15_brightness",
            preprocessor=None,
            strength=1
        )
    ],
    embeddings=[Img2ImgV3Embedding(model_name=_) for _ in [
        "BadDream_53202",
    ]],
    seed=-1,
)


base64_to_image(res.images_encoded[0]).save("./img2img-controlnet.png")

create-tile

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.create_tile(
    prompt="a cute flower",
)


base64_to_image(res.image_file).save("./create-tile.png")

doodle

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.doodle(
     image="https://img.freepik.com/premium-photo/close-up-dogs-face-with-big-smile-generative-ai_900101-62851.jpg",
     prompt="A cute dog",
)

base64_to_image(res.image_file).save("./doodle.png")

img2img

import pdb
import os

from novita_client import NovitaClient, Img2ImgV3ControlNetUnit, ControlNetPreprocessor, Img2ImgV3Embedding
from novita_client.utils import base64_to_image, input_image_to_pil
from concurrent.futures import ThreadPoolExecutor

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

res = client.img2img_v3(
    model_name="MeinaHentai_V5.safetensors",
    steps=30,
    height=512,
    width=512,
    input_image="https://img.freepik.com/premium-photo/close-up-dogs-face-with-big-smile-generative-ai_900101-62851.jpg",
    prompt="1 cute dog",
    strength=0.5,
    guidance_scale=7,
    embeddings=[Img2ImgV3Embedding(model_name=_) for _ in [
        "bad-image-v2-39000",
        "verybadimagenegative_v1.3_21434",
        "BadDream_53202",
        "badhandv4_16755",
        "easynegative_8955.safetensors"]],
    seed=-1,
    sampler_name="DPM++ 2M Karras",
    sd_vae="klF8Anime2VAE_klF8Anime2VAE_207314.safetensors",
    clip_skip=2,
    # controlnet_units=[Img2ImgV3ControlNetUnit(
    #     model_name="control_v11f1p_sd15_depth",
    #     preprocessor="depth",
    #     image_base64="./20240309-003206.jpeg",
    #     strength=1.0
    # )]
)

base64_to_image(res.images_encoded[0]).save("./img2img.png")

img2video

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URNOVITA_API_URII', None))
res = client.img2video(
    model_name="SVD-XT",
    steps=30,
    frames_num=25,
    image="https://replicate.delivery/pbxt/JvLi9smWKKDfQpylBYosqQRfPKZPntuAziesp0VuPjidq61n/rocket.png",
    enable_frame_interpolation=True
)


with open("test.mp4", "wb") as f:
    f.write(res.video_bytes[0])

instantid

import os
from novita_client import NovitaClient, InstantIDControlnetUnit
import base64



if __name__ == '__main__':
	client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

	res = client.instant_id(
		model_name="sdxlUnstableDiffusers_v8HEAVENSWRATH_133813.safetensors",
		face_images=[
			"https://raw.githubusercontent.com/InstantID/InstantID/main/examples/yann-lecun_resize.jpg",
		],
		prompt="Flat illustration, a Chinese a man, ancient style, wearing a red cloth, smile face, white skin, clean background, fireworks blooming, red lanterns",
		negative_prompt="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
		id_strength=0.8,
		adapter_strength=0.8,
		steps=20,
		seed=42,
		width=1024,
		height=1024,
		controlnets=[
			InstantIDControlnetUnit(
				model_name='controlnet-openpose-sdxl-1.0',
				strength=0.4,
				preprocessor='openpose',
			),
			InstantIDControlnetUnit(
				model_name='controlnet-canny-sdxl-1.0',
				strength=0.3,
				preprocessor='canny',
			),
		],
		response_image_type='jpeg',
	)

	print('res:', res)

	if hasattr(res, 'images_encoded'):
		with open(f"instantid.png", "wb") as f:
			f.write(base64.b64decode(res.images_encoded[0]))

latent-consistency-txt2img

from novita_client import *
from novita_client.utils import save_image, read_image_to_base64, base64_to_image
import os
from PIL import Image
import random
import sys


def test_lcm_txt2img():
    client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

    x, y = 0, 0
    background = Image.new('RGB', (512 * 10, 512 * 10), (255, 255, 255))
    for i in range(20):
        animals = ["cat", "dog", "bird", "horse", "elephant", "giraffe", "zebra", "lion", "tiger", "bear", "sheep", "cow", "pig"]
        res = client.lcm_txt2img(
            prompt=f"a cute {random.choice(animals)}, masterpiece, best quality, realism",
            steps=8,
            image_num=5,
        )
        images = [base64_to_image(img.image_file) for img in res.images]
        for image in images:
            background.paste(image, (x, y))
            background.save("lcm.jpeg")
            x += 512
            if x >= 512 * 10:
                x = 0
                y += 512


def test_normal_txt2img():
    client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

    x, y = 0, 0
    background = Image.new('RGB', (512 * 10, 512 * 10), (255, 255, 255))
    for i in range(20):
        animals = ["cat", "dog", "bird", "horse", "elephant", "giraffe", "zebra", "lion", "tiger", "bear", "sheep", "cow", "pig"]
        res = client.sync_txt2img(
            Txt2ImgRequest(
                prompt=f"a cute {random.choice(animals)}, masterpiece, best quality, realism",
                steps=20,
                height=512,
                width=512,
                batch_size=5,
            )
        )
        images = [Image.open(BytesIO(b) for b in res.data.imgs_bytes)]
        for image in images:
            background.paste(image, (x, y))
            background.save("normal.jpeg")
            x += 512 
            if x >= 512 * 10:  
                x = 0
                y += 512


if __name__ == '__main__':
    if len(sys.argv) > 1:
        if sys.argv[1] == "normal":
            test_normal_txt2img()
        else:
            test_lcm_txt2img()

lcm-img2img

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import os
from novita_client import NovitaClient


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

res = client.lcm_img2img(
    model_name="dreamshaper_8_93211.safetensors",
    prompt="1 house",
    image="https://replicate.delivery/pbxt/JvLi9smWKKDfQpylBYosqQRfPKZPntuAziesp0VuPjidq61n/rocket.png",
    steps=4,
    guidance_scale=1,
    clip_skip=1,
    image_num=1,
)

print(res.to_json())
res.images[0]

lcm-vs-txt2img

from novita_client import *
from novita_client.utils import save_image, read_image_to_base64, base64_to_image
import os
from PIL import Image
import random
import sys


def test_lcm_txt2img():
    client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

    x, y = 0, 0
    background = Image.new('RGB', (512 * 10, 512 * 10), (255, 255, 255))
    animals = ["cat", "dog", "bird", "horse", "elephant", "giraffe", "zebra", "lion", "tiger", "bear", "sheep", "cow", "pig"]
    for i in range(20):
        object_prompt = animals[i % len(animals)]
        res = client.lcm_txt2img(
            prompt=f"a cute {object_prompt}, masterpiece, best quality, realism, high saturation",
            steps=8,
            image_num=5,
        )
        images = [base64_to_image(img.image_file) for img in res.images]
        for image in images:
            background.paste(image, (x, y))
            background.save("lcm.jpeg")
            x += 512
            if x >= 512 * 10:
                x = 0
                y += 512


def test_normal_txt2img():
    client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

    x, y = 0, 0
    background = Image.new('RGB', (512 * 10, 512 * 10), (255, 255, 255))
    animals = ["cat", "dog", "bird", "horse", "elephant", "giraffe", "zebra", "lion", "tiger", "bear", "sheep", "cow", "pig"]
    for i in range(20):
        object_prompt = animals[i % len(animals)]
        res = client.sync_txt2img(
            Txt2ImgRequest(
                model_name="dreamshaper_7_77036.safetensors",
                prompt=f"a cute {object_prompt}, masterpiece, best quality, realism",
                steps=20,
                height=512,
                width=512,
                batch_size=5,
            )
        )
        images = [Image.open(BytesIO(b)) for b in res.data.imgs_bytes]
        for image in images:
            background.paste(image, (x, y))
            background.save("normal.jpeg")
            # 更新位置计数器
            x += 512  # 向右移动一个图像的宽度
            if x >= 512 * 10:  # 如果一行已满,换到下一行
                x = 0
                y += 512


if __name__ == '__main__':
    if len(sys.argv) > 1:
        if sys.argv[1] == "normal":
            test_normal_txt2img()
        else:
            test_lcm_txt2img()

make-photo

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import os
from novita_client import NovitaClient, MakePhotoLoRA
import base64


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

res = client.make_photo(
    model_name="sd_xl_base_1.0.safetensors",
    prompt="anime artwork man img, portrait. anime style, key visual, vibrant, studio anime, highly detailed",
    negative_prompt="wrong, photo, deformed, black and white, realism, disfigured, low contrast",
    images=[
        "../testdataset/portrait2image/7.jpg"
    ],
    loras=[
        MakePhotoLoRA(
            model_name="sdxl_wrong_lora",
            strength=0.8
        )
    ],
    steps=25,
    guidance_scale=5,
    image_num=1,
    strength=0.3,
    seed=1024,
)


for idx in range(len(res.images_encoded)):
    with open(f"make_photo_{idx}.png", "wb") as f:
        f.write(base64.b64decode(res.images_encoded[idx]))

merge-face

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.merge_face(
    image="https://www.wgm8.com/wp-content/uploads/2016/06/images_wgm_online-only_Gaming_2016_30-06-16-1.jpg",
    face_image="https://p7.itc.cn/images01/20220220/285669b5682540a8a307a87d8745f530.jpeg",
)

base64_to_image(res.image_file).save("./merge_face.png")

mixpose

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.mixpose(
    image="https://image.uniqlo.com/UQ/ST3/my/imagesgoods/455359/item/mygoods_23_455359.jpg?width=494",
    pose_image="https://image.uniqlo.com/UQ/ST3/ca/imagesgoods/455359/item/cagoods_02_455359.jpg?width=494",
)

base64_to_image(res.image_file).save("./mixpose.png")

model-search

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

from novita_client import NovitaClient, ModelType
# get your api key refer to https://docs.novita.ai/get-started/
client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

# filter by model type
print("lora count", len(client.models().filter_by_type(ModelType.LORA)))
print("checkpoint count", len(client.models().filter_by_type(ModelType.CHECKPOINT)))
print("textinversion count", len(
    client.models().filter_by_type(ModelType.TEXT_INVERSION)))
print("vae count", len(client.models().filter_by_type(ModelType.VAE)))
print("controlnet count", len(client.models().filter_by_type(ModelType.CONTROLNET)))


# filter by civitai tags
client.models().filter_by_civi_tags('anime')

# filter by nsfw
client.models().filter_by_nsfw(False)  # or True

# sort by civitai download
client.models().sort_by_civitai_download()

# chain filters
client.models().\
    filter_by_type(ModelType.CHECKPOINT).\
    filter_by_nsfw(False).\
    filter_by_civitai_tags('anime')

outpainting

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.outpainting(
    image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    width=910,
    height=512,
    center_x=0,
    center_y=0,
)
base64_to_image(res.image_file).save("./outpainting.png")

reimagine

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.reimagine(
    image="/home/anyisalin/develop/novita-client-python/examples/doodle-generated.png"
)

base64_to_image(res.image_file).save("./reimagine.png")

remove-background

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.remove_background(
    image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
)
base64_to_image(res.image_file).save("./remove_background.png")

remove-text

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.remove_text(
    image="https://images.uiiiuiii.com/wp-content/uploads/2023/07/i-banner-20230714-1.jpg"
)

base64_to_image(res.image_file).save("./remove_text.png")

replace-background

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.replace_background(
    image="./telegram-cloud-photo-size-2-5408823814353177899-y.jpg",
    prompt="in living room, Christmas tree",
)
base64_to_image(res.image_file).save("./replace_background.png")

replace-object

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.replace_object(
    image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    object_prompt="a dog",
    prompt="a cute cat"
)
base64_to_image(res.image_file).save("./replace_object.png")

replace-sky

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.replace_sky(
    image="https://dynamic-media-cdn.tripadvisor.com/media/photo-o/17/16/a6/88/con-la-primavera-in-giappone.jpg?w=700",
    sky="galaxy"
)


base64_to_image(res.image_file).save("./replace_sky.png")

txt2img-with-hiresfix

import os

from novita_client import NovitaClient, Samplers, Txt2ImgV3HiresFix
from novita_client.utils import base64_to_image

from PIL import Image


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.txt2img_v3(
    model_name='dreamshaper_8_93211.safetensors',
    prompt="a cute girl",
    width=384,
    height=512,
    image_num=1,
    guidance_scale=7.5,
    seed=12345,
    sampler_name=Samplers.EULER_A,
    hires_fix=Txt2ImgV3HiresFix(
        # upscaler='Latent'
        target_width=768,
        target_height=1024,
        strength=0.5
    )
)


base64_to_image(res.images_encoded[0]).save("./txt2img_with_hiresfix.png")

txt2img-with-lora

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import os
from novita_client import NovitaClient, Txt2ImgV3LoRA, Samplers, ProgressResponseStatusCode, ModelType, add_lora_to_prompt, save_image
from novita_client.utils import base64_to_image, input_image_to_pil
from PIL import Image


def make_image_grid(images, rows: int, cols: int, resize: int = None):
    """
    Prepares a single grid of images. Useful for visualization purposes.
    """
    assert len(images) == rows * cols

    if resize is not None:
        images = [img.resize((resize, resize)) for img in images]

    w, h = images[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(images):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

res1 = client.txt2img_v3(
    prompt="a photo of handsome man, close up",
    image_num=1,
    guidance_scale=7.0,
    sampler_name=Samplers.DPMPP_M_KARRAS,
    model_name="dreamshaper_8_93211.safetensors",
    height=512,
    width=512,
    seed=1024,
)
res2 = client.txt2img_v3(
    prompt="a photo of handsome man, close up",
    image_num=1,
    guidance_scale=7.0,
    sampler_name=Samplers.DPMPP_M_KARRAS,
    model_name="dreamshaper_8_93211.safetensors",
    height=512,
    width=512,
    seed=1024,
    loras=[
        Txt2ImgV3LoRA(
           model_name="add_detail_44319",
           strength=0.9,
        )
    ]
)

make_image_grid([base64_to_image(res1.images_encoded[0]), base64_to_image(res2.images_encoded[0])], 1, 2, 512).save("./txt2img-lora-compare.png")

txt2img-with-refiner

import os

from novita_client import NovitaClient, Txt2ImgV3Refiner, Samplers
from novita_client.utils import base64_to_image
from PIL import Image


def make_image_grid(images, rows: int, cols: int, resize: int = None):
    """
    Prepares a single grid of images. Useful for visualization purposes.
    """
    assert len(images) == rows * cols

    if resize is not None:
        images = [img.resize((resize, resize)) for img in images]

    w, h = images[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(images):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

r1 = client.txt2img_v3(
    model_name='sd_xl_base_1.0.safetensors',
    prompt='a astronaut riding a bike on the moon',
    width=1024,
    height=1024,
    image_num=1,
    guidance_scale=7.5,
    sampler_name=Samplers.EULER_A,
)

r2 = client.txt2img_v3(
    model_name='sd_xl_base_1.0.safetensors',
    prompt='a astronaut riding a bike on the moon',
    width=1024,
    height=1024,
    image_num=1,
    guidance_scale=7.5,
    sampler_name=Samplers.EULER_A,
    refiner=Txt2ImgV3Refiner(
        switch_at=0.7
    )
)

r3 = client.txt2img_v3(
    model_name='sd_xl_base_1.0.safetensors',
    prompt='a astronaut riding a bike on the moon',
    width=1024,
    height=1024,
    image_num=1,
    guidance_scale=7.5,
    sampler_name=Samplers.EULER_A,
    refiner=Txt2ImgV3Refiner(
        switch_at=0.5
    )
)


make_image_grid([base64_to_image(r1.images_encoded[0]), base64_to_image(r2.images_encoded[0]), base64_to_image(r3.images_encoded[0])], 1, 3, 1024).save("./txt2img-refiner-compare.png")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

novita_client-0.5.7.tar.gz (189.1 kB view hashes)

Uploaded Source

Built Distribution

novita_client-0.5.7-py3-none-any.whl (27.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page