Skip to main content

Novita AI Python SDK

Project description

Novita AI Python SDK

This SDK is based on the official API documentation.

Join our discord server for help:

Installation

pip install novita-client

Examples

Code Examples

cleanup

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.cleanup(
    image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    mask="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
)

base64_to_image(res.image_file).save("./cleanup.png")

controlnet

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import os

from novita_client import NovitaClient, Img2ImgV3Request, Img2ImgV3ControlNetUnit, ControlnetUnit, Samplers, Img2ImgV3Embedding
from novita_client.utils import base64_to_image


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.img2img_v3(
    input_image="https://img.freepik.com/premium-photo/close-up-dogs-face-with-big-smile-generative-ai_900101-62851.jpg",
    model_name="dreamshaper_8_93211.safetensors",
    prompt="a cute dog",
    sampler_name=Samplers.DPMPP_M_KARRAS,
    width=512,
    height=512,
    steps=30,
    controlnet_units=[
        Img2ImgV3ControlNetUnit(
            image_base64="https://img.freepik.com/premium-photo/close-up-dogs-face-with-big-smile-generative-ai_900101-62851.jpg",
            model_name="control_v11f1p_sd15_depth",
            strength=1.0
        )
    ],
    embeddings=[Img2ImgV3Embedding(model_name=_) for _ in [
        "BadDream_53202",
    ]],
    seed=-1,
)


base64_to_image(res.images_encoded[0]).save("./img2img-controlnet.png")

img2img

import pdb
import os

from novita_client import NovitaClient, Img2ImgV3ControlNetUnit, ControlNetPreprocessor, Img2ImgV3Embedding
from novita_client.utils import base64_to_image, input_image_to_pil

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.img2img_v3(
    model_name="MeinaHentai_V5.safetensors",
    steps=30,
    height=512,
    width=512,
    input_image="https://img.freepik.com/premium-photo/close-up-dogs-face-with-big-smile-generative-ai_900101-62851.jpg",
    prompt="1 cute dog",
    strength=0.5,
    guidance_scale=7,
    embeddings=[Img2ImgV3Embedding(model_name=_) for _ in [
        "bad-image-v2-39000",
        "verybadimagenegative_v1.3_21434",
        "BadDream_53202",
        "badhandv4_16755",
        "easynegative_8955.safetensors"]],
    seed=-1,
    sampler_name="DPM++ 2M Karras",
    clip_skip=2,
    # controlnet_units=[Img2ImgV3ControlNetUnit(
    #     model_name="control_v11f1p_sd15_depth",
    #     preprocessor="depth",
    #     image_base64="./20240309-003206.jpeg",
    #     strength=1.0
    # )]
)

base64_to_image(res.images_encoded[0]).save("./img2img.png")

img2video

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URNOVITA_API_URII', None))
res = client.img2video(
    model_name="SVD-XT",
    steps=30,
    frames_num=25,
    image="https://replicate.delivery/pbxt/JvLi9smWKKDfQpylBYosqQRfPKZPntuAziesp0VuPjidq61n/rocket.png",
    enable_frame_interpolation=True
)


with open("test.mp4", "wb") as f:
    f.write(res.video_bytes[0])

inpainting

import os
import base64
from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.inpainting(
    model_name = "realisticVisionV40_v40VAE-inpainting_81543.safetensors",
    image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    mask="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    seed=1,
    guidance_scale=15,
    steps = 20,
    image_num = 4,
    prompt = "black rabbit",
    negative_prompt = "white rabbit",
    sampler_name = "Euler a",
    inpainting_full_res = 1,
    inpainting_full_res_padding = 32,
    inpainting_mask_invert = 0,
    initial_noise_multiplier = 1,
    mask_blur = 1,
    clip_skip = 1,
    strength = 0.85,
)
with open("result/result_image/inpaintingsdk.jpeg", "wb") as image_file:
    image_file.write(base64.b64decode(res.images_encoded[0]))```

### instantid
```python

import os
from novita_client import NovitaClient, InstantIDControlnetUnit
import base64



if __name__ == '__main__':
	client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

	res = client.instant_id(
		model_name="sdxlUnstableDiffusers_v8HEAVENSWRATH_133813.safetensors",
		face_images=[
			"https://raw.githubusercontent.com/InstantID/InstantID/main/examples/yann-lecun_resize.jpg",
		],
		prompt="Flat illustration, a Chinese a man, ancient style, wearing a red cloth, smile face, white skin, clean background, fireworks blooming, red lanterns",
		negative_prompt="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
		id_strength=0.8,
		adapter_strength=0.8,
		steps=20,
		seed=42,
		width=1024,
		height=1024,
		controlnets=[
			InstantIDControlnetUnit(
				model_name='controlnet-openpose-sdxl-1.0',
				strength=0.4,
				preprocessor='openpose',
			),
			InstantIDControlnetUnit(
				model_name='controlnet-canny-sdxl-1.0',
				strength=0.3,
				preprocessor='canny',
			),
		],
		response_image_type='jpeg',
		enterprise_plan=False,
	)

	print('res:', res)

	if hasattr(res, 'images_encoded'):
		with open(f"instantid.png", "wb") as f:
			f.write(base64.b64decode(res.images_encoded[0]))

merge-face

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.merge_face(
    image="https://toppng.com/uploads/preview/cut-out-people-png-personas-en-formato-11563277290kozkuzsos5.png",
    face_image="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQDy7sXtuvCNUQoQZvTbLRbX6qK9_kP3PlQfg&s",
    enterprise_plan=False,
)

base64_to_image(res.image_file).save("./merge_face.png")

model-search

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

from novita_client import NovitaClient, ModelType
# get your api key refer to https://docs.novita.ai/get-started/
client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

# filter by model type
print("lora count", len(client.models().filter_by_type(ModelType.LORA)))
print("checkpoint count", len(client.models().filter_by_type(ModelType.CHECKPOINT)))
print("textinversion count", len(
    client.models().filter_by_type(ModelType.TEXT_INVERSION)))
print("vae count", len(client.models().filter_by_type(ModelType.VAE)))
print("controlnet count", len(client.models().filter_by_type(ModelType.CONTROLNET)))


# filter by civitai tags
client.models().filter_by_civi_tags('anime')

# filter by nsfw
client.models().filter_by_nsfw(False)  # or True

# sort by civitai download
client.models().sort_by_civitai_download()

# chain filters
client.models().\
    filter_by_type(ModelType.CHECKPOINT).\
    filter_by_nsfw(False).\
    filter_by_civitai_tags('anime')

outpainting

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.outpainting(
    image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
    width=910,
    height=512,
    center_x=0,
    center_y=0,
)
base64_to_image(res.image_file).save("./outpainting.png")

reimagine

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.reimagine(
    image="/home/anyisalin/develop/novita-client-python/examples/doodle-generated.png"
)

base64_to_image(res.image_file).save("./reimagine.png")

remove-background

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.remove_background(
    image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
)
base64_to_image(res.image_file).save("./remove_background.png")

remove-text

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.remove_text(
    image="https://images.uiiiuiii.com/wp-content/uploads/2023/07/i-banner-20230714-1.jpg"
)

base64_to_image(res.image_file).save("./remove_text.png")

replace-background

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.replace_background(
    image="./telegram-cloud-photo-size-2-5408823814353177899-y.jpg",
    prompt="in living room, Christmas tree",
)
base64_to_image(res.image_file).save("./replace_background.png")

restore-face

import os

from novita_client import NovitaClient
from novita_client.utils import base64_to_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.restore_face(
    image="https://xintao-gfpgan.hf.space/file=/home/user/app/lincoln.jpg",
    fidelity=0.5,#The fidelity of the original portrait, on a scale from 0 to 1.0, with higher scores indicating better fidelity. Range: [0, 1]
    enterprise_plan=False
    )
base64_to_image(res.image_file).save("./restore_face.png")

txt2img-with-hiresfix

import os

from novita_client import NovitaClient, Samplers, Txt2ImgV3HiresFix
from novita_client.utils import base64_to_image

from PIL import Image


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.txt2img_v3(
    model_name='dreamshaper_8_93211.safetensors',
    prompt="a cute girl",
    width=384,
    height=512,
    image_num=1,
    guidance_scale=7.5,
    seed=12345,
    sampler_name=Samplers.EULER_A,
    hires_fix=Txt2ImgV3HiresFix(
        # upscaler='Latent'
        target_width=768,
        target_height=1024,
        strength=0.5
    )
)


base64_to_image(res.images_encoded[0]).save("./txt2img_with_hiresfix.png")

txt2img-with-lora

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import os
from novita_client import NovitaClient, Txt2ImgV3LoRA, Samplers, ProgressResponseStatusCode, ModelType, add_lora_to_prompt, save_image
from novita_client.utils import base64_to_image, input_image_to_pil
from PIL import Image


def make_image_grid(images, rows: int, cols: int, resize: int = None):
    """
    Prepares a single grid of images. Useful for visualization purposes.
    """
    assert len(images) == rows * cols

    if resize is not None:
        images = [img.resize((resize, resize)) for img in images]

    w, h = images[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(images):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

res1 = client.txt2img_v3(
    prompt="a photo of handsome man, close up",
    image_num=1,
    guidance_scale=7.0,
    sampler_name=Samplers.DPMPP_M_KARRAS,
    model_name="dreamshaper_8_93211.safetensors",
    height=512,
    width=512,
    seed=1024,
)
res2 = client.txt2img_v3(
    prompt="a photo of handsome man, close up",
    image_num=1,
    guidance_scale=7.0,
    sampler_name=Samplers.DPMPP_M_KARRAS,
    model_name="dreamshaper_8_93211.safetensors",
    height=512,
    width=512,
    seed=1024,
    loras=[
        Txt2ImgV3LoRA(
           model_name="add_detail_44319",
           strength=0.9,
        )
    ]
)

make_image_grid([base64_to_image(res1.images_encoded[0]), base64_to_image(res2.images_encoded[0])], 1, 2, 512).save("./txt2img-lora-compare.png")

txt2img-with-refiner

import os

from novita_client import NovitaClient, Txt2ImgV3Refiner, Samplers
from novita_client.utils import base64_to_image
from PIL import Image


def make_image_grid(images, rows: int, cols: int, resize: int = None):
    """
    Prepares a single grid of images. Useful for visualization purposes.
    """
    assert len(images) == rows * cols

    if resize is not None:
        images = [img.resize((resize, resize)) for img in images]

    w, h = images[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(images):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))

r1 = client.txt2img_v3(
    model_name='sd_xl_base_1.0.safetensors',
    prompt='a astronaut riding a bike on the moon',
    width=1024,
    height=1024,
    image_num=1,
    guidance_scale=7.5,
    sampler_name=Samplers.EULER_A,
)

r2 = client.txt2img_v3(
    model_name='sd_xl_base_1.0.safetensors',
    prompt='a astronaut riding a bike on the moon',
    width=1024,
    height=1024,
    image_num=1,
    guidance_scale=7.5,
    sampler_name=Samplers.EULER_A,
    refiner=Txt2ImgV3Refiner(
        switch_at=0.7
    )
)

r3 = client.txt2img_v3(
    model_name='sd_xl_base_1.0.safetensors',
    prompt='a astronaut riding a bike on the moon',
    width=1024,
    height=1024,
    image_num=1,
    guidance_scale=7.5,
    sampler_name=Samplers.EULER_A,
    refiner=Txt2ImgV3Refiner(
        switch_at=0.5
    )
)


make_image_grid([base64_to_image(r1.images_encoded[0]), base64_to_image(r2.images_encoded[0]), base64_to_image(r3.images_encoded[0])], 1, 3, 1024).save("./txt2img-refiner-compare.png")

txt2video

import os

from novita_client import NovitaClient
from novita_client.utils import save_image

client = NovitaClient(os.getenv('NOVITA_API_KEY'), os.getenv('NOVITA_API_URI', None))
res = client.txt2video(
        model_name = "dreamshaper_8_93211.safetensors",
        prompts = [{
                    "prompt": "A girl, baby, portrait, 5 years old",
                    "frames": 16,},
                    {
                    "prompt": "A girl, child, portrait, 10 years old",
                    "frames": 16,
                    }
                    ],
        steps = 20,
        guidance_scale = 10,
        height = 512,
        width = 768,
        clip_skip = 4,
        negative_prompt = "a rainy day",
        response_video_type = "mp4",
    )
save_image(res.video_bytes[0], 'output.mp4')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

novita_client-0.6.1.tar.gz (31.4 kB view hashes)

Uploaded Source

Built Distribution

novita_client-0.6.1-py3-none-any.whl (23.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page