The nptsne package is designed to export a number of python classes that wrap tSNE.
Project description
nptsne - A numpy compatible python extension for GPGPU linear complexity tSNE
The nptsne package is designed to export a number of python classes that wrap GPGPU linear complexity tSNE implementations based on the following publications DOI: 10.1109/TVCG.2019.2934307 or the arXiv preprint
When using nptsne please include the following citation:
N. Pezzotti et al., "GPGPU Linear Complexity t-SNE Optimization," in IEEE Transactions on Visualization and Computer Graphics.
doi: 10.1109/TVCG.2019.2934307
keywords: {Minimization;Linear programming;Computational modeling;Approximation algorithms;Complexity theory;Optimization;Data visualization;High Dimensional Data;Dimensionality Reduction;Progressive Visual Analytics;Approximate Computation;GPGPU},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8811606&isnumber=4359476
Attributions
The tSNE implementations are the original work of the authors named in the literature.
Full documentation
Full documentation is available at the nptsne doc pages
Wrapper classes
Class | Description | Doc link |
---|---|---|
TextureTsne | Linear time tSNE reliant on GPU textures | https://biovault.github.io/nptsne/nptsne.html#nptsne.TextureTsne |
TextureTsneExtended | Linear time tSNE reliant on GPU textures, extended API | https://biovault.github.io/nptsne/nptsne.html#nptsne.TextureTsneExtended |
Linux support
Linux: (only Ubuntu 16.06 and upward is supported). Download the correct file (see below) for your python version and install using pip install .whl
py36 | py37 |
---|---|
Ubuntu py36 wheel | Ubuntu py37 wheel |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for nptsne-1.0.0-cp37-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6e478b0b32583151eb5b88c73ff824ed75cdab30afdecc1153a48910695482e |
|
MD5 | 42c78b636ce486ff1f76a41011ef4193 |
|
BLAKE2b-256 | bd6f81177732a73d56bd5be5055944cc598dfc185edfa060daee5b3f5bccc1be |
Hashes for nptsne-1.0.0-cp37-none-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 276ae8f247dc4193f47887485512738a0c3f22b9fc6ac3ce2e7ef3bc467e39d0 |
|
MD5 | 647a33886fc25e5520919b11c949f2b0 |
|
BLAKE2b-256 | 5bb53d264b2c16a6827b10de5af0fa6886e37da691c5b237a5f30eb41c182e6d |
Hashes for nptsne-1.0.0-cp36-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f385eecfb5fe5536d68daaecf1e0d7aed707f6268920eea5549b06c09a5eb005 |
|
MD5 | 2f6463d69bd431fe3ec6fe47b72ad716 |
|
BLAKE2b-256 | 1ab683ed78e840eaa63cc8d97f2a2c3f7a4372bd84ac2bec261285d5a08bbf69 |
Hashes for nptsne-1.0.0-cp36-none-macosx_10_6_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5b68821c61273dcf300a9605f6aea78457c7b30879322eb889e5376393e51c8 |
|
MD5 | 55bb48f58e85a1ac6cfc9fa184002651 |
|
BLAKE2b-256 | 683b1df31d5afa2af789312958515e5beca0272279ad4fc1ea652ffc3cc342e8 |