Skip to main content

Python interface for the NRLMSISE-00 neutral atmosphere model

Project description

PyNRLMSISE-00

Python interface for the NRLMSISE-00 empirical neutral atmosphere model

builds docs package wheel pyversions codecov coveralls scrutinizer

This python version of the NRLMSISE00 upper atmosphere model is based on the C-version of the code, available at www.brodo.de/space/nrlmsise. The C code is imported as a git submodule from git://git.linta.de/~brodo/nrlmsise-00.git (browsable version at: https://git.linta.de/?p=~brodo/nrlmsise-00.git).

:warning: This python interface is in the alpha stage, that is, it may or may not work, and the interface will most likely change in future versions.

Documentation can be found at https://pynrlmsise00.readthedocs.io

Quote from https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=MSISE:

“The MSISE model describes the neutral temperature and densities in Earth's atmosphere from ground to thermospheric heights. The NRLMSIS-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and Doug Drob.”

Install

Requirements

  • numpy - required
  • pytest - optional, for testing

To compile the C source code, additional system header files may be required. For example on Debian/Ubuntu Linux, the package libc6-dev is needed.

pynrlmsise00

An experimental pip package called nrlmsise00 is available from the main package repository, and can be installed with:

$ pip install nrlmsise00

In some cases this will install from the source package and the note above about the additional requirements applies.

As binary package support is limited, pynrlmsise00 can be installed with pip directly from github (see https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support and https://pip.pypa.io/en/stable/reference/pip_install/#git):

$ pip install [-e] git+https://github.com/st-bender/pynrlmsise00.git

The other option is to use a local clone:

$ git clone https://github.com/st-bender/pynrlmsise00.git
$ cd pynrlmsise00
$ git submodule init
$ git submodule update

and then using pip (optionally using -e, see https://pip.pypa.io/en/stable/reference/pip_install/#install-editable):

$ pip install [-e] .

or using setup.py:

$ python setup.py install

Optionally, test the correct function of the module with

$ py.test [-v]

or even including the doctests in this document:

$ py.test [-v] --doctest-glob='*.md'

Usage

The python module itself is named nrlmsise00 and is imported as usual:

>>> import nrlmsise00

Basic class and method documentation is accessible via pydoc:

$ pydoc nrlmsise00

Python interface

The Python interface functions take datetime.datetime objects for convenience. The local solar time is calculated from that time and the given location, but it can be set explicitly via the lst keyword. The returned value has the same format as the original C version (see below). Because of their similarity, gtd7() and gtd7d() are selected via the method keyword, gtd7 is the default.

The return values are tuples of two lists containing the densities (d[0]--d[8]) and temperatures (t[0], t[1]).

The output has the same order as the C reference code, in particular:

  • d[0] - He number density [cm⁻³]
  • d[1] - O number density [cm⁻³]
  • d[2] - N2 number density [cm⁻³]
  • d[3] - O2 number density [cm⁻³]
  • d[4] - Ar number density [cm⁻³]
  • d[5] - total mass density [g cm⁻³]) (includes d[8] in gtd7d())
  • d[6] - H number density [cm⁻³]
  • d[7] - N number density [cm⁻³]
  • d[8] - Anomalous oxygen number density [cm⁻³]
  • t[0] - exospheric temperature [K]
  • t[1] - temperature at alt [K]

The flags and ap_a value array are set via keywords, but both default to the standard setting, such that changing them should not be necessary for most use cases. For example setting flag[0] to 1 changes the output to metres and kilograms instead of centimetres and grams (0 is the default).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_model
>>> msise_model(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4, lst=16)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

NumPy interface

A numpy compatible flat version is available as msise_flat(), it returns a 11-element numpy.ndarray with the densities in the first 9 entries and the temperatures in the last two entries. That is ret = numpy.ndarray([d[0], ..., d[8], t[0], t[1]]).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_flat
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4)
array([5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
       1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
       2.66727321e+04, 1.10058413e+03, 1.09824872e+03])

All arguments can be numpy.ndarrays, but must be broadcastable to a common shape. For example to calculate the values for three altitudes (200, 300, and 400 km) and two latitude locations (60 and 70 °N) simultaneously, one can use numpy.newaxis (which is equal to None) like this:

>>> from datetime import datetime
>>> import numpy as np
>>> from nrlmsise00 import msise_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), alts[None, :], lats[:, None], -70, 150, 150, 4)
array([[[1.36949418e+06, 1.95229496e+09, 3.83824808e+09, 1.79130515e+08,
         4.92145034e+06, 2.40511268e-13, 8.34108685e+04, 1.74317585e+07,
         3.45500931e-08, 1.10058413e+03, 9.68827485e+02],
        [8.40190601e+05, 3.25739060e+08, 1.82477392e+08, 5.37973134e+06,
         6.53609278e+04, 1.75304136e-14, 5.92944463e+04, 4.36516218e+06,
         1.03939126e+02, 1.10058413e+03, 1.08356514e+03],
        [5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
         1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
         2.66727321e+04, 1.10058413e+03, 1.09824872e+03]],
<BLANKLINE>
       [[1.10012225e+06, 1.94725472e+09, 4.08547233e+09, 1.92320077e+08,
         6.65460281e+06, 2.52846563e-13, 6.16745965e+04, 2.45012145e+07,
         5.21846603e-08, 1.13812434e+03, 1.00132640e+03],
        [6.83809952e+05, 3.42643970e+08, 2.13434661e+08, 6.43426889e+06,
         1.01162173e+05, 1.95300073e-14, 4.36031132e+04, 6.70490625e+06,
         1.59911615e+02, 1.13812434e+03, 1.12084651e+03],
        [4.65787225e+05, 7.52160226e+07, 1.51795904e+07, 3.13560147e+05,
         2.32541183e+03, 2.76353370e-15, 3.92811827e+04, 1.73321928e+06,
         4.12296154e+04, 1.13812434e+03, 1.13580463e+03]]])

Xarray Dataset interface

Output to a 4-D xarray.Dataset is supported via the dataset submodule which can be installed with:

pip install [-U] 'nrlmsise00[dataset]'

This module provides a 4-D version msise_4d() to broadcast the 1-D inputs for time, altitude, latitude, and longitude. It also uses the spaceweather package by default to automatically obtain the geomagnetic and Solar flux indices. The variable names are set according to the MSIS output.

>>> from datetime import datetime
>>> from nrlmsise00.dataset import msise_4d
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> lons = np.arange(-70., 71., 35.)  # = [-70, -35,  0, 35, 70] [°E]
>>> # broadcasting is done internally
>>> ds = msise_4d(datetime(2009, 6, 21, 8, 3, 20), alts, lats, lons)
>>> ds
<xarray.Dataset>
Dimensions:  (alt: 3, lat: 2, lon: 5, time: 1)
Coordinates:
  * time     (time) datetime64[ns] 2009-06-21T08:03:20
  * alt      (alt) float64 200.0 300.0 400.0
  * lat      (lat) float64 60.0 70.0
  * lon      (lon) float64 -70.0 -35.0 0.0 35.0 70.0
Data variables:
    He       (time, alt, lat, lon) float64 8.597e+05 1.063e+06 ... 4.936e+05
    O        (time, alt, lat, lon) float64 1.248e+09 1.46e+09 ... 2.635e+07
    N2       (time, alt, lat, lon) float64 2.555e+09 2.654e+09 ... 1.667e+06
    O2       (time, alt, lat, lon) float64 2.1e+08 2.062e+08 ... 3.471e+04
    Ar       (time, alt, lat, lon) float64 3.16e+06 3.287e+06 ... 76.55 67.16
    rho      (time, alt, lat, lon) float64 1.635e-13 1.736e-13 ... 7.984e-16
    H        (time, alt, lat, lon) float64 3.144e+05 3.02e+05 ... 1.237e+05
    N        (time, alt, lat, lon) float64 9.095e+06 1.069e+07 ... 6.765e+05
    AnomO    (time, alt, lat, lon) float64 1.173e-08 1.173e-08 ... 1.101e+04
    Texo     (time, alt, lat, lon) float64 805.2 823.7 807.1 ... 818.7 821.2
    Talt     (time, alt, lat, lon) float64 757.9 758.7 766.4 ... 818.7 821.1
    lst      (time, lon) float64 3.389 5.722 8.056 10.39 12.72
    Ap       (time) int32 6
    f107     (time) float64 66.7
    f107a    (time) float64 69.0

C model interface

The C submodule directly interfaces the model functions gtd7() and gtd7d() by importing nrlmsise00._nrlmsise00.

>>> from nrlmsise00._nrlmsise00 import gtd7, gtd7d
>>> # using the standard flags
>>> gtd7(2009, 172, 29000, 400, 60, -70, 16, 150, 150, 4)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

This module also provides "flat" variants of the C functions as gtd7_flat() and gtd7d_flat(). For example using gtd7() the same way as above:

>>> import numpy as np
>>> from nrlmsise00 import gtd7_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> gtd7_flat(2009, 172, 29000, alts[None, :], lats[:, None], -70, 16, 150, 150, 4)
array([[[1.55567936e+06, 2.55949597e+09, 4.00342724e+09, 1.74513806e+08,
         6.56916263e+06, 2.64872982e-13, 5.63405578e+04, 4.71893934e+07,
         3.45500931e-08, 1.25053994e+03, 1.02704994e+03],
        [9.58507714e+05, 4.66979460e+08, 2.31041924e+08, 6.58659651e+06,
         1.16566762e+05, 2.38399390e-14, 3.86535595e+04, 1.43755262e+07,
         1.03939126e+02, 1.25053994e+03, 1.20645403e+03],
        [6.66517690e+05, 1.13880556e+08, 1.99821093e+07, 4.02276359e+05,
         3.55746499e+03, 4.07471353e-15, 3.47531240e+04, 4.09591327e+06,
         2.66727321e+04, 1.25053994e+03, 1.24141613e+03]],
<BLANKLINE>
       [[1.31669842e+06, 2.40644124e+09, 4.21778196e+09, 1.89878716e+08,
         8.17662024e+06, 2.71788520e-13, 4.64192484e+04, 5.13265845e+07,
         5.21846603e-08, 1.24246351e+03, 1.04698385e+03],
        [8.22632403e+05, 4.52803942e+08, 2.53857090e+08, 7.50201654e+06,
         1.53431033e+05, 2.46179628e-14, 3.20594861e+04, 1.62651506e+07,
         1.59911615e+02, 1.24246351e+03, 1.20963726e+03],
        [5.73944168e+05, 1.10836468e+08, 2.19925518e+07, 4.58648922e+05,
         4.68600377e+03, 4.10277781e-15, 2.89330169e+04, 4.65636025e+06,
         4.12296154e+04, 1.24246351e+03, 1.23665288e+03]]])

Note

All functions require the solar 10.7 cm radio flux and and the geomagnetic Ap index values to produce correct results. In particular, according to the C source code:

  • f107A: 81 day average of F10.7 flux (centered on the given day of year)
  • f107: daily F10.7 flux for previous day
  • ap: magnetic index (daily)

The f107 and f107A values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values (outdated): ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

f107, f107A, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150., 150., and 4. respectively.

License

This python interface is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see local copy or online version.

The C source code of NRLMSISE-00 is in the public domain, see COPYING.NRLMSISE-00.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nrlmsise00-0.0.2.tar.gz (62.8 kB view details)

Uploaded Source

Built Distributions

nrlmsise00-0.0.2-pp36-pypy36_pp73-win32.whl (47.1 kB view details)

Uploaded PyPy Windows x86

nrlmsise00-0.0.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl (53.7 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2-pp27-pypy_73-manylinux2010_x86_64.whl (53.5 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2-cp38-cp38-win_amd64.whl (48.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

nrlmsise00-0.0.2-cp38-cp38-win32.whl (46.6 kB view details)

Uploaded CPython 3.8 Windows x86

nrlmsise00-0.0.2-cp38-cp38-manylinux2010_x86_64.whl (88.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2-cp38-cp38-manylinux2010_i686.whl (82.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2-cp38-cp38-manylinux1_x86_64.whl (88.8 kB view details)

Uploaded CPython 3.8

nrlmsise00-0.0.2-cp38-cp38-manylinux1_i686.whl (82.3 kB view details)

Uploaded CPython 3.8

nrlmsise00-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl (64.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nrlmsise00-0.0.2-cp37-cp37m-win_amd64.whl (48.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

nrlmsise00-0.0.2-cp37-cp37m-win32.whl (46.6 kB view details)

Uploaded CPython 3.7m Windows x86

nrlmsise00-0.0.2-cp37-cp37m-manylinux2010_x86_64.whl (89.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2-cp37-cp37m-manylinux2010_i686.whl (83.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2-cp37-cp37m-manylinux1_x86_64.whl (89.9 kB view details)

Uploaded CPython 3.7m

nrlmsise00-0.0.2-cp37-cp37m-manylinux1_i686.whl (83.3 kB view details)

Uploaded CPython 3.7m

nrlmsise00-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (64.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

nrlmsise00-0.0.2-cp36-cp36m-win_amd64.whl (48.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

nrlmsise00-0.0.2-cp36-cp36m-win32.whl (46.6 kB view details)

Uploaded CPython 3.6m Windows x86

nrlmsise00-0.0.2-cp36-cp36m-manylinux2010_x86_64.whl (88.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2-cp36-cp36m-manylinux2010_i686.whl (82.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2-cp36-cp36m-manylinux1_x86_64.whl (88.9 kB view details)

Uploaded CPython 3.6m

nrlmsise00-0.0.2-cp36-cp36m-manylinux1_i686.whl (82.4 kB view details)

Uploaded CPython 3.6m

nrlmsise00-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl (63.9 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

nrlmsise00-0.0.2-cp35-cp35m-win_amd64.whl (48.8 kB view details)

Uploaded CPython 3.5m Windows x86-64

nrlmsise00-0.0.2-cp35-cp35m-win32.whl (46.6 kB view details)

Uploaded CPython 3.5m Windows x86

nrlmsise00-0.0.2-cp35-cp35m-manylinux2010_x86_64.whl (88.7 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2-cp35-cp35m-manylinux2010_i686.whl (82.2 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2-cp35-cp35m-manylinux1_x86_64.whl (88.7 kB view details)

Uploaded CPython 3.5m

nrlmsise00-0.0.2-cp35-cp35m-manylinux1_i686.whl (82.2 kB view details)

Uploaded CPython 3.5m

nrlmsise00-0.0.2-cp35-cp35m-macosx_10_9_x86_64.whl (63.9 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

nrlmsise00-0.0.2-cp34-cp34m-manylinux1_x86_64.whl (70.4 kB view details)

Uploaded CPython 3.4m

nrlmsise00-0.0.2-cp34-cp34m-manylinux1_i686.whl (65.1 kB view details)

Uploaded CPython 3.4m

nrlmsise00-0.0.2-cp27-cp27mu-manylinux2010_x86_64.whl (87.5 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2-cp27-cp27mu-manylinux2010_i686.whl (81.1 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2-cp27-cp27mu-manylinux1_x86_64.whl (87.5 kB view details)

Uploaded CPython 2.7mu

nrlmsise00-0.0.2-cp27-cp27mu-manylinux1_i686.whl (81.1 kB view details)

Uploaded CPython 2.7mu

nrlmsise00-0.0.2-cp27-cp27m-manylinux2010_x86_64.whl (87.5 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2-cp27-cp27m-manylinux2010_i686.whl (81.1 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2-cp27-cp27m-manylinux1_x86_64.whl (87.5 kB view details)

Uploaded CPython 2.7m

nrlmsise00-0.0.2-cp27-cp27m-manylinux1_i686.whl (81.1 kB view details)

Uploaded CPython 2.7m

nrlmsise00-0.0.2-cp27-cp27m-macosx_10_9_x86_64.whl (63.9 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file nrlmsise00-0.0.2.tar.gz.

File metadata

  • Download URL: nrlmsise00-0.0.2.tar.gz
  • Upload date:
  • Size: 62.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2.tar.gz
Algorithm Hash digest
SHA256 a63fdc7dbf5e8f38b637f0bac4662d26f0cc1d2efe4349af554da5f7177079d9
MD5 ce8b4d82ede59e10c915fde5142d7750
BLAKE2b-256 dc58fed9ba0098b02ebf20c4df3480780f5274c524d4f80f0fd48b3931be84ce

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 47.1 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 0f0705c1f6414a51ca073f8f4e15eba65e73e3c0e57c25026a11d3e9108268d4
MD5 786830ba3793e9d21e8962b02d99b55d
BLAKE2b-256 d665ba2b172aa008f16aac354299145947f5eace3ad37fce52f07cf0cc3f606e

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e2dab40c3fc2f34c2902dd3adbfb30e8850bce495476156891b9c288f2c99d86
MD5 010e100070d4ee0ee4a133f313d07313
BLAKE2b-256 d45a28fdedb41a352e767b66ea1abd981a546a576a53fee5bfd0f42ffbe7d836

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 56e1be16cc51ae598e0bb782c40575f80f1df501f8e472fd91cebc9fa11b0f1d
MD5 da7a1e9a73524d0f0832bf0dff6bdeef
BLAKE2b-256 6190ff747acee433b5392b5982bfd247eb4a3f8a266179c229501e644a165a21

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 53.5 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9ecc6879a9905ad70c2fd1ff234826b647126b62002e44cd92bd9ef7c53cf5d6
MD5 d9a38a4346cff5a41bc595af28767751
BLAKE2b-256 3a9c3a04c5bac43329dd2a37eff93191f717ca5a2c299fdf3c70906d06f78de3

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-pp27-pypy_73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-pp27-pypy_73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 53.5 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-pp27-pypy_73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c1a8a4c379e98c09e511b5f62e0604682cc8f7a91d3d6fa055ebf05623c2b952
MD5 ad0f74c1a81b69383d8e07a8ed90d2c5
BLAKE2b-256 5193dfd5791e3651da2a7a2d69e07b5e9fdc4fabbbec0cf374601bbbf145c1f8

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 48.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fcadd4355a43b72fc5b2c03ee05dbf92f3769d47ef0226f1333c00216d172cc3
MD5 48d3e6a2a2c79d106d76324f59c7e871
BLAKE2b-256 6f3596152573c093b947d2ecbd8d9d8adf430c38d02aa6c8a739d38e9da01d8a

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c90da5008633456b970ce2e07440b312877684dfb550f45a0de0f17d773ccfd4
MD5 b0f78ca9e71da9891e562ae7078562b3
BLAKE2b-256 102e6eae0485898cd803c0edacf37df4752b7cce7b931e2dcfe16cadcf3c520b

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.8 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 30cbe043bb6dc87541f3a21bfd11d1d3d371ed571267d6a84ca5df449251fb1d
MD5 1dbb118d985a5ddd738ed622ff4d247b
BLAKE2b-256 f7b22209c9b0585ca1f8e5d28a4f3d05d12df8e35695dc271a58079d9f41b17c

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 39b3c1ad80fce5b173c3f289f884bb7dcc7f76c4d2cc08e1a7f8151b85d656fa
MD5 16dcb0cacefd45dc2ec64fc928b191b3
BLAKE2b-256 e818051bebb3c89aa6ea34bfd769f5886109cf1d38fe188fe11881fab31cdc21

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.8 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 be174b479b86b4279a18d2fd443484cf07fa92c7212a83bfb72e62023c53f43d
MD5 e4d16ce31b5477c2075e6d89e963fe90
BLAKE2b-256 f6c681de0fbe6ba26e65ac11ee06e7533b0ae0b1c85fac9c9daf418adf32b923

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fcfe3348353553ec75aec22036447fb60c3902dbb5033ea5cc82b3c7a16a63b9
MD5 23a4876def1c8e3abb0fa13aa82f4257
BLAKE2b-256 e73a301e0d0266368565169fbc0dc5330a44c5acaf44cc526b43496a1b5b96e7

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 64.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c2760775773124633dbe8bee7bb58d10eddb2b5d504169e38e5b4b3d254a235
MD5 074e29816f51753a1645ff35f8425e91
BLAKE2b-256 bb623ec9c2f1d625e66ebe52ce2e0c77b70a97ce7de61615524f3deff8f59c66

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 48.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 13bd31b316136f0e1e0e0cb961321c39daae0bf8698b31c653112f9825150af7
MD5 9c725226deee8cebfdde01af870d6ab4
BLAKE2b-256 899b7038d096fc827b91763b03838215751aa2b1978398a02e3cf290439620d6

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 47de621415a9eaf20ddc757dc8eb9578d9aae9a6d9b8360cab3b6f9ff15753e0
MD5 5f496611cb06c72cce93a52ae0cedc79
BLAKE2b-256 1cacc32b71777dfb03c4a04019203d9eec7a4dca4cd2f0dc44985e7366fcc57c

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 89.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1058f25b073988ad4f550b9fb12a4547c76ae0c720a1e8dac0059ee672854bee
MD5 44469a1daa2e0a0fcecc044936086932
BLAKE2b-256 fdbded17f97b5bc7f24897e9de7d47c294ed6c31302e87c2a36a38130c7628ba

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 83.3 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 635b869965c24b48e2a9ed6d40630b97fe431c0a8d70134a1ed9cbe6fe409fc6
MD5 dbdb726c0495d79dfcc8b1d7a165cdd1
BLAKE2b-256 76bc82fb41b8f592b3da17dde3485cc24fdfcb535b56386c029c75101956b0be

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 89.9 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e2797ff5f1b8d498a6c60264ec5dca340e1ff60f1a8220f1fe5bc2c8c83ee298
MD5 379d3c0884c3194b78ddf9a5b8f066b9
BLAKE2b-256 1c4a73788f6000b7b29e1583c17395b38dc1185f2b61757336da34d6b700c580

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 83.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0215f7d1927f5e1a27b36856b0756b70d3d601494000bb716b8c0b7f4f96762b
MD5 12ac313b91fd13ba3787dfc98921d982
BLAKE2b-256 fdbf5c4b1269fb4035e60706b8113c59bd475ba3a6f5b2d9e8ba66bca51a5f7b

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 64.0 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6032242e47e58f7c300156aac39b740d63b695ae5388c7bd1e59561f671631ab
MD5 30279814023c55a98a8ac0110555952c
BLAKE2b-256 f1e5d70053577f496f57d1c154c668ba2535e1df9f5b28c91afca761163c40fb

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 48.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 858e56cdd8d43b807bf569ab0f2802ead813594c771f7dcfbb90d56a648fb3c3
MD5 35b59c148498340363428f3f0abd50f3
BLAKE2b-256 76ca10e59f28307918a37dfcf17729a262adbf536ccbf8cdbcfc722a57330208

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b05098cc969e76208f7e9988cb301a400bdec9560b4207d25ccbede87ee384f3
MD5 399c56fdc3efc9c4abaa34290bbdc407
BLAKE2b-256 0ed6b63af4eed9801e817c327d5ec64a662195735f0c27189d9502f2cbc0d0ec

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.9 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b4e4635c6bd5d8f73731871a0342b02d3452036e5066d331c6b30b460312e005
MD5 cd9a7f2fd2aa9f72458273bd140f040a
BLAKE2b-256 aa075a49fe915920c9441a8f4e13248c831575df58f1c1e4288b67fb88af2d26

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.4 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 19ccf45bf2566c719811bea4ef42790a2f56586783da2f3f9672d080925eb2ce
MD5 c8e40fd79d7d1c95f865d6ae2c6562d4
BLAKE2b-256 72d4c12bbdfc371dedce0e254bd910106dec2ca62428ed1f8689bdfa7090e81e

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.9 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 737919985c3c9c82a9c6f8751940c8ec80e02086b27b2d3d4a8cea200681e152
MD5 f5f40a6621568e9af51630a186c5fd95
BLAKE2b-256 c2dd5acc50cf7707cc1cde80b36207392cf866637a508994252a52668742ae7b

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 82.4 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0fc5807d916ccb0f191de7d0413c59173380fe67b3c9f67206d6c35721aa449d
MD5 7aa28844b995d9b48feed18d4ad3b87c
BLAKE2b-256 a5ac86a35f99ca405b4b24cd63dea6fc05a0aa5a806959bca01d051566fa1997

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 63.9 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.0.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 49433415f6cc989f0c3af68102eb099eedcd082e800430ea9d11aa6765df65d4
MD5 33cfcec72df7adf78b76e5ad3924a87d
BLAKE2b-256 6cc09627e4c4db580287a7021c523944bb49ab4b2546e5151cd192a788a72ee7

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 48.8 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 16f2ad952af3c0ea015849d810243d17e12c4b952a82dc9e1109fcc86fa2610a
MD5 ff05dce5d26293ade8ecfa7497bafa9f
BLAKE2b-256 eaaa169877b9cea493c4fa903ea6fbd9a1302aa29969b69bde4ad76cb3d04bd4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 033f67eb1bb7e70d2adf99a3ace8c586851e1f08cc56198d23fe99a5f19a81f9
MD5 fbd628beba9a7dcadaf04adc20d5dd6c
BLAKE2b-256 aaa62b335ff2318babda1213c86daa034cb8263fca0739713bd08b93616f11b5

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.7 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a0bc0962cf0883635888b7e7338440c00a3edd543f6576d05f840119d93f993c
MD5 47620900001ab084a0aaa604ca878edf
BLAKE2b-256 3cfe7c5948463681ab3e40f25dcfbfe91877d22c92dacfd89373d265ae63eb69

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.2 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ad3912e4272fe3922c3cc0a59810175095c7ee723927d1b6ccb7197f5c67ea8b
MD5 802c55f677eabf30c6deb2efe2c801fc
BLAKE2b-256 e2505d0ec2db367e9955c01379afbff458730270875acd68df3329cc9c7eb0c4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c722abb72e2b3e53c9d3e0dee7fe3041db5db6ce487c6eef10c630e04db1220e
MD5 a32feca5275f1ca2195d4ec3f2bd2b10
BLAKE2b-256 5792e3125d2de7bc7e9154e9e62ebb77f168773239c992c75a31601816931ce4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 82.2 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 930bef430afd174f8e678cbb600d5c0a082555f7a3fec89d5d08c7f83de2bb5d
MD5 a3ee9d80b82e8df64d5574521f2bad45
BLAKE2b-256 cb2a65b86126fdb8a83947b2eaefae5bf7d110a74d08e2a8ea1eaee773dfcd37

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 63.9 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.0.2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9e21d775825f6490ec04c68610576c58fb9ab00223957865ffa465736ada317
MD5 3d0c5149b59fc0c176133b90d6edc6ec
BLAKE2b-256 ca9ffdedd589be230bd00456e5c3bfbd4274b44379181ac60ccd909d486688df

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 70.4 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c4dfb00764357bb7753faaeb365a42ec8215bcd541e2f25b75d6edc2acbb402d
MD5 d055be8b046d3d1ff74a5191efce75dc
BLAKE2b-256 facbf7e92034ad89774b295a053bad030b6f0a4516d254d007afd83494c1faa9

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 65.1 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9dbbb3a93ef274e564f7507047a4f7ee693d95008b80c145c2f432a8fdca354d
MD5 6f43348574ed9c8f0aa863ad65cf1543
BLAKE2b-256 625776b52a45a5f6dea9d20b51ee3b192db0027bec0a2c51c2b2d2cb75ef1d53

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 87.5 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f077624b071b19af3cbdd6d489054bb8840dca14fd8c7f32d83db1c7ed27e7db
MD5 69808b95bb3bb4cf747ba2a131ca364b
BLAKE2b-256 c03e29956bd13f0f779bbe3294d85c67563373ac7c8a8ed443a0cdd9a2aba94f

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0c86ddd52e84a27591848ff31b4c980cd8b2169683d4203632a476262d4a6650
MD5 4a2c96af1ec2bb29ae4a202abcd0c737
BLAKE2b-256 bb003afab251482921c182c64de2904538415d6c8cf1a0bdc8c29c17bad8b269

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 87.5 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2f7472e796db401c1704d5f0a0e1c65b622f160825c7175b4537473f29f33035
MD5 4be3a74d6ba8ceb7ddc14148596e22b6
BLAKE2b-256 de87f034b9f0f81923e338e50d031723f75881bad5bf37f0475a8f4338a6e806

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 34cafdd598800da9cdc8ae5451b0d5b6e1ab6d4ce74652ed830d9fdf2f269d79
MD5 8b3121c8f1448070ee4e10f3d923df2f
BLAKE2b-256 654496a1d32a93b2c0795025776b69ae036f624ebaaabdc498a1ed85cc0d2121

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 87.5 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fa05be4d3c9e14ff3b544ce8985a09ceacba722a911b74772a1893f80e9cd47a
MD5 1f9a0f7d4198d2391c4f8bd94c9559d7
BLAKE2b-256 c872873f5645000d8f8cac01702871a1c4b17723bdcc10c7cbbe08fc6a2a6289

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ef592783a2fd70e70e84646cf4932c13ddd591b340accd6ffa7535c8f6f23f49
MD5 8ea158aa2d739939a6ceb196d60bbfe8
BLAKE2b-256 77c30de2914711d660482cf6578ecc4b7a63d5ad19bae585b5f1570ea1942279

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 87.5 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e1c0d96be227f0f446fdd6b4505ccb205677de11a8f1ab00808abfd0491be62d
MD5 39f1afeab8f31959af3abac41b33e704
BLAKE2b-256 fe605b52907e278f1edb72691549afff10c596ef9629fa614a5100e215d10926

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bbd03e66a1d2c16adafb373c1e71e5f2b56c0f3be710901eba5253ab9f8d4c0a
MD5 89a483f8e1bebaaa28d98ef32dfce8ce
BLAKE2b-256 51b37806ed601b949a6e77d8b1a9b971efdd5558b02151bacdce5dfc38972ce2

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 63.9 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.0.2-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d37b78e52c11136e7eb7f6a6fb251b1677c78fddf09c5afa559f727b863c386
MD5 d0b882181d4008ceb62236166f65ef88
BLAKE2b-256 fe9b9403779f2781406ace8bb2d8ac0205309ddb9ea138799830cfff493d0b8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page