Skip to main content

Python interface for the NRLMSISE-00 neutral atmosphere model

Project description

Python interface for the NRLMSISE-00 empirical neutral atmosphere model

builds package wheel pyversions codecov coveralls scrutinizer

This python version of the NRLMSISE00 upper atmosphere model is based on the C-version of the code, available at www.brodo.de/space/nrlmsise. The C code is imported as a git submodule from git://git.linta.de/~brodo/nrlmsise-00.git (browsable version at: https://git.linta.de/?p=~brodo/nrlmsise-00.git).

:warning: This python interface is in the alpha stage, that is, it may or may not work, and the interface will most likely change in future versions.

Quote from https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=MSISE:

“The MSISE model describes the neutral temperature and densities in Earth's atmosphere from ground to thermospheric heights. The NRLMSIS-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and Doug Drob.”

Install

Requirements

  • numpy - required
  • pytest - optional, for testing

To compile the C source code, additional system header files may be required. For example on Debian/Ubuntu Linux, the package libc6-dev is needed.

pynrlmsise00

An experimental pip package called nrlmsise00 is available from the main package repository, and can be installed with:

$ pip install nrlmsise00

In some cases this will install from the source package and the note above about the additional requirements applies.

As binary package support is limited, pynrlmsise00 can be installed with pip directly from github (see https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support and https://pip.pypa.io/en/stable/reference/pip_install/#git):

$ pip install [-e] git+https://github.com/st-bender/pynrlmsise00.git

The other option is to use a local clone:

$ git clone https://github.com/st-bender/pynrlmsise00.git
$ cd pynrlmsise00
$ git submodule init
$ git submodule update

and then using pip (optionally using -e, see https://pip.pypa.io/en/stable/reference/pip_install/#install-editable):

$ pip install [-e] .

or using setup.py:

$ python setup.py install

Optionally, test the correct function of the module with

$ py.test [-v]

or even including the doctests in this document:

$ py.test [-v] --doctest-glob='*.md'

Usage

The python module itself is named nrlmsise00 and is imported as usual:

>>> import nrlmsise00

Basic class and method documentation is accessible via pydoc:

$ pydoc nrlmsise00

Python interface

The Python interface functions take datetime.datetime objects for convenience. The local solar time is calculated from that time and the given location, but it can be set explicitly via the lst keyword. The returned value has the same format as the original C version (see below). Because of their similarity, gtd7() and gtd7d() are selected via the method keyword, gtd7 is the default.

The return values are tuples of two lists containing the densities (d[0]--d[8]) and temperatures (t[0], t[1]).

The output has the same order as the C reference code, in particular:

  • d[0] - He number density [cm⁻³]
  • d[1] - O number density [cm⁻³]
  • d[2] - N2 number density [cm⁻³]
  • d[3] - O2 number density [cm⁻³]
  • d[4] - Ar number density [cm⁻³]
  • d[5] - total mass density [g cm⁻³]) (includes d[8] in gtd7d())
  • d[6] - H number density [cm⁻³]
  • d[7] - N number density [cm⁻³]
  • d[8] - Anomalous oxygen number density [cm⁻³]
  • t[0] - exospheric temperature [K]
  • t[1] - temperature at alt [K]

The flags and ap_a value array are set via keywords, but both default to the standard setting, such that changing them should not be necessary for most use cases. For example setting flag[0] to 1 changes the output to metres and kilograms instead of centimetres and grams (0 is the default).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_model
>>> msise_model(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4, lst=16)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

NumPy interface

A numpy compatible flat version is available as msise_flat(), it returns a 11-element numpy.ndarray with the densities in the first 9 entries and the temperatures in the last two entries. That is ret = numpy.ndarray([d[0], ..., d[8], t[0], t[1]]).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_flat
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4)
array([5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
       1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
       2.66727321e+04, 1.10058413e+03, 1.09824872e+03])

All arguments can be numpy.ndarrays, but must be broadcastable to a common shape. For example to calculate the values for three altitudes (200, 300, and 400 km) and two latitude locations (60 and 70 °N) simultaneously, one can use numpy.newaxis (which is equal to None) like this:

>>> from datetime import datetime
>>> import numpy as np
>>> from nrlmsise00 import msise_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), alts[None, :], lats[:, None], -70, 150, 150, 4)
array([[[1.36949418e+06, 1.95229496e+09, 3.83824808e+09, 1.79130515e+08,
         4.92145034e+06, 2.40511268e-13, 8.34108685e+04, 1.74317585e+07,
         3.45500931e-08, 1.10058413e+03, 9.68827485e+02],
        [8.40190601e+05, 3.25739060e+08, 1.82477392e+08, 5.37973134e+06,
         6.53609278e+04, 1.75304136e-14, 5.92944463e+04, 4.36516218e+06,
         1.03939126e+02, 1.10058413e+03, 1.08356514e+03],
        [5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
         1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
         2.66727321e+04, 1.10058413e+03, 1.09824872e+03]],
<BLANKLINE>
       [[1.10012225e+06, 1.94725472e+09, 4.08547233e+09, 1.92320077e+08,
         6.65460281e+06, 2.52846563e-13, 6.16745965e+04, 2.45012145e+07,
         5.21846603e-08, 1.13812434e+03, 1.00132640e+03],
        [6.83809952e+05, 3.42643970e+08, 2.13434661e+08, 6.43426889e+06,
         1.01162173e+05, 1.95300073e-14, 4.36031132e+04, 6.70490625e+06,
         1.59911615e+02, 1.13812434e+03, 1.12084651e+03],
        [4.65787225e+05, 7.52160226e+07, 1.51795904e+07, 3.13560147e+05,
         2.32541183e+03, 2.76353370e-15, 3.92811827e+04, 1.73321928e+06,
         4.12296154e+04, 1.13812434e+03, 1.13580463e+03]]])

Xarray Dataset interface

Output to a 4-D xarray.Dataset is supported via the dataset submodule which can be installed with:

pip install [-U] 'nrlmsise00[dataset]'

This module provides a 4-D version msise_4d() to broadcast the 1-D inputs for time, altitude, latitude, and longitude. It also uses the spaceweather package by default to automatically obtain the geomagnetic and Solar flux indices. The variable names are set according to the MSIS output.

>>> from datetime import datetime
>>> from nrlmsise00.dataset import msise_4d
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> lons = np.arange(-70., 71., 35.)  # = [-70, -35,  0, 35, 70] [°E]
>>> # broadcasting is done internally
>>> ds = msise_4d(datetime(2009, 6, 21, 8, 3, 20), alts, lats, lons)
>>> ds
<xarray.Dataset>
Dimensions:  (alt: 3, lat: 2, lon: 5, time: 1)
Coordinates:
  * time     (time) datetime64[ns] 2009-06-21T08:03:20
  * alt      (alt) float64 200.0 300.0 400.0
  * lat      (lat) float64 60.0 70.0
  * lon      (lon) float64 -70.0 -35.0 0.0 35.0 70.0
Data variables:
    He       (time, alt, lat, lon) float64 8.597e+05 1.063e+06 ... 4.936e+05
    O        (time, alt, lat, lon) float64 1.248e+09 1.46e+09 ... 2.635e+07
    N2       (time, alt, lat, lon) float64 2.555e+09 2.654e+09 ... 1.667e+06
    O2       (time, alt, lat, lon) float64 2.1e+08 2.062e+08 ... 3.471e+04
    Ar       (time, alt, lat, lon) float64 3.16e+06 3.287e+06 ... 76.55 67.16
    rho      (time, alt, lat, lon) float64 1.635e-13 1.736e-13 ... 7.984e-16
    H        (time, alt, lat, lon) float64 3.144e+05 3.02e+05 ... 1.237e+05
    N        (time, alt, lat, lon) float64 9.095e+06 1.069e+07 ... 6.765e+05
    AnomO    (time, alt, lat, lon) float64 1.173e-08 1.173e-08 ... 1.101e+04
    Texo     (time, alt, lat, lon) float64 805.2 823.7 807.1 ... 818.7 821.2
    Talt     (time, alt, lat, lon) float64 757.9 758.7 766.4 ... 818.7 821.1
    lst      (time, lon) float64 3.389 5.722 8.056 10.39 12.72
    Ap       (time) int32 6
    f107     (time) float64 66.7
    f107a    (time) float64 69.0

C model interface

The C submodule directly interfaces the model functions gtd7() and gtd7d() by importing nrlmsise00._nrlmsise00.

>>> from nrlmsise00._nrlmsise00 import gtd7, gtd7d
>>> # using the standard flags
>>> gtd7(2009, 172, 29000, 400, 60, -70, 16, 150, 150, 4)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

This module also provides "flat" variants of the C functions as gtd7_flat() and gtd7d_flat(). For example using gtd7() the same way as above:

>>> import numpy as np
>>> from nrlmsise00 import gtd7_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> gtd7_flat(2009, 172, 29000, alts[None, :], lats[:, None], -70, 16, 150, 150, 4)
array([[[1.55567936e+06, 2.55949597e+09, 4.00342724e+09, 1.74513806e+08,
         6.56916263e+06, 2.64872982e-13, 5.63405578e+04, 4.71893934e+07,
         3.45500931e-08, 1.25053994e+03, 1.02704994e+03],
        [9.58507714e+05, 4.66979460e+08, 2.31041924e+08, 6.58659651e+06,
         1.16566762e+05, 2.38399390e-14, 3.86535595e+04, 1.43755262e+07,
         1.03939126e+02, 1.25053994e+03, 1.20645403e+03],
        [6.66517690e+05, 1.13880556e+08, 1.99821093e+07, 4.02276359e+05,
         3.55746499e+03, 4.07471353e-15, 3.47531240e+04, 4.09591327e+06,
         2.66727321e+04, 1.25053994e+03, 1.24141613e+03]],
<BLANKLINE>
       [[1.31669842e+06, 2.40644124e+09, 4.21778196e+09, 1.89878716e+08,
         8.17662024e+06, 2.71788520e-13, 4.64192484e+04, 5.13265845e+07,
         5.21846603e-08, 1.24246351e+03, 1.04698385e+03],
        [8.22632403e+05, 4.52803942e+08, 2.53857090e+08, 7.50201654e+06,
         1.53431033e+05, 2.46179628e-14, 3.20594861e+04, 1.62651506e+07,
         1.59911615e+02, 1.24246351e+03, 1.20963726e+03],
        [5.73944168e+05, 1.10836468e+08, 2.19925518e+07, 4.58648922e+05,
         4.68600377e+03, 4.10277781e-15, 2.89330169e+04, 4.65636025e+06,
         4.12296154e+04, 1.24246351e+03, 1.23665288e+03]]])

Note

All functions require the solar 10.7 cm radio flux and and the geomagnetic Ap index values to produce correct results. In particular, according to the C source code:

  • f107A: 81 day average of F10.7 flux (centered on the given day of year)
  • f107: daily F10.7 flux for previous day
  • ap: magnetic index (daily)

The f107 and f107A values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values (outdated): ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

f107, f107A, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150., 150., and 4. respectively.

License

This python interface is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see local copy or online version.

The C source code of NRLMSISE-00 is in the public domain, see COPYING.NRLMSISE-00.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nrlmsise00-0.0.2rc1.tar.gz (59.8 kB view details)

Uploaded Source

Built Distributions

nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-win32.whl (47.1 kB view details)

Uploaded PyPy Windows x86

nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-manylinux2010_x86_64.whl (53.7 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2rc1-pp27-pypy_73-manylinux2010_x86_64.whl (53.5 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2rc1-cp38-cp38-win_amd64.whl (48.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

nrlmsise00-0.0.2rc1-cp38-cp38-win32.whl (46.6 kB view details)

Uploaded CPython 3.8 Windows x86

nrlmsise00-0.0.2rc1-cp38-cp38-manylinux2010_x86_64.whl (88.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2rc1-cp38-cp38-manylinux2010_i686.whl (82.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2rc1-cp38-cp38-manylinux1_x86_64.whl (88.6 kB view details)

Uploaded CPython 3.8

nrlmsise00-0.0.2rc1-cp38-cp38-manylinux1_i686.whl (82.1 kB view details)

Uploaded CPython 3.8

nrlmsise00-0.0.2rc1-cp37-cp37m-win_amd64.whl (48.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

nrlmsise00-0.0.2rc1-cp37-cp37m-win32.whl (46.6 kB view details)

Uploaded CPython 3.7m Windows x86

nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux2010_x86_64.whl (77.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux2010_i686.whl (83.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux1_x86_64.whl (77.0 kB view details)

Uploaded CPython 3.7m

nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux1_i686.whl (83.1 kB view details)

Uploaded CPython 3.7m

nrlmsise00-0.0.2rc1-cp36-cp36m-win_amd64.whl (48.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

nrlmsise00-0.0.2rc1-cp36-cp36m-win32.whl (46.6 kB view details)

Uploaded CPython 3.6m Windows x86

nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux2010_x86_64.whl (88.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux2010_i686.whl (82.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux1_x86_64.whl (88.7 kB view details)

Uploaded CPython 3.6m

nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux1_i686.whl (82.2 kB view details)

Uploaded CPython 3.6m

nrlmsise00-0.0.2rc1-cp35-cp35m-win_amd64.whl (48.8 kB view details)

Uploaded CPython 3.5m Windows x86-64

nrlmsise00-0.0.2rc1-cp35-cp35m-win32.whl (46.6 kB view details)

Uploaded CPython 3.5m Windows x86

nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux2010_x86_64.whl (88.5 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux2010_i686.whl (82.0 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux1_x86_64.whl (88.5 kB view details)

Uploaded CPython 3.5m

nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux1_i686.whl (82.0 kB view details)

Uploaded CPython 3.5m

nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux2010_x86_64.whl (87.3 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux2010_i686.whl (80.9 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux1_x86_64.whl (87.3 kB view details)

Uploaded CPython 2.7mu

nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux1_i686.whl (80.9 kB view details)

Uploaded CPython 2.7mu

nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux2010_x86_64.whl (87.3 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux2010_i686.whl (80.9 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux1_x86_64.whl (87.3 kB view details)

Uploaded CPython 2.7m

nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux1_i686.whl (80.9 kB view details)

Uploaded CPython 2.7m

File details

Details for the file nrlmsise00-0.0.2rc1.tar.gz.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1.tar.gz
  • Upload date:
  • Size: 59.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1.tar.gz
Algorithm Hash digest
SHA256 07bba9d8de213cdd0a1f5ee34f405fa00ef2c1f689dbf637c798a915913b2a49
MD5 1edfb1dd8c790b12bd42a007e4d161dc
BLAKE2b-256 0ade2691d75094b2fff1c1833f1fc3e25e3332704a67a062f364d5680fa1b107

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 47.1 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 cfa537bc58ef0cc2a256ae9d29d7d15d05caeafbb2bb02220b68ce6485f51565
MD5 20e92aa13cd9286b22e83379b86c7914
BLAKE2b-256 d61c8c974dd108cbaf15a4a98bc3c35e8a2713f7cf8e9b06e8962d75addd3bee

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 82ca14010896153130b872871c7c5eb872088ca57a54b6041e6c0c1e975f0d01
MD5 1110d2edfb06ba668ac339a41469e0ba
BLAKE2b-256 d99d28ee43e7a2eab3446655d0d6cb8b6d455f802a5f750b81227f1b1c2722f4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.0.2rc1-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a77d22986588dea583ceca112d762bbd99f283a71b6aac8db1ae2b40d9065b2b
MD5 16a874bbbfb412dfa753cedfb250c62f
BLAKE2b-256 38cc52809f28fcc0b0ae7fc70ec727b41a43ca1d8d5870174f2f8d1c6b3adcea

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 53.5 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3a9f085de9de582ffebaf1f50f5d4015998c14a450cf9ad0c23e1950e7b5dec0
MD5 abc94b5a5b2de05b94bb0acbc3af0e9c
BLAKE2b-256 c3b372f7bd2cf817c005894e62c8cd3616cacb1a8aebacfa7d5b610cc8cfd333

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-pp27-pypy_73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-pp27-pypy_73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 53.5 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-pp27-pypy_73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bbf8189cd6fa8d5273ab9e168c561b9a8363fc2a3d291786927cf5bdac741ca6
MD5 b87a22594f146202092c4ab83b9402eb
BLAKE2b-256 49967dba564126dc479450eef2d8509a0b11f74242082f767cd6026d4734af36

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 48.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 352a8e5f1f6ee981fd026e51c43e05f152e6e3053c957f0e26288a3b188b578b
MD5 f575de85aa745758ee7304e5bd2c2b4a
BLAKE2b-256 0c25baa6ef83b3388f8cf9233a9aef8546616c2990a58d54ebc82c5ee7a0e351

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp38-cp38-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 541ba33fe75258c5bbde51b543ea7db1eb637413fbf8bdf392bab96961ef37ea
MD5 0292f5213828eb5a4fceb574e94c1381
BLAKE2b-256 3fd585a0b1f2e5ba523e3d3215b5ef5d7dc92baafc2209270d904334f026fa12

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0ad3d094455d3580d3c3235e3a538696f45fa757f3b00432e0e484e98b51041f
MD5 2f2aa2efb4be4b10fc51760c0b497b2d
BLAKE2b-256 d46a8bc331fd589ec3d9225ea4f2f30188ea7e409d52977b57bf95ea4cf85a36

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.1 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4a5b3810d11c8496a08e2eb215ed18fab607121831492ed6066bd27635038409
MD5 56cff26e24e679f44b8d3b40a6190b6f
BLAKE2b-256 f2d64580595f6b2ffebefeaf1539bb2532ccf1b9cd59bcf9e419d7ceeab63899

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.6 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b1623744f24e274e062cab314f6dbeb58d806ef21272e01c7169ee76a6b70a84
MD5 0ffc0f3365b1296d8e6b3da33182c82d
BLAKE2b-256 798d720772ea1ac5ccba29d2157c9340bf491ef523ba6aec68f8932881e75f8d

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 82.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e0e77e4195c3b4098bfe9aee3a6f9997e2f7c3cf4ccd4aa95687d298eb40825a
MD5 57d876406f37830102ca98731142d904
BLAKE2b-256 df442e8da026aafcb1b103ca1f7137ac62dd19c44bb0a6b14a21996aeeaf9266

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 48.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1f89b495ab057283b87aeb738f1f077127274add7a3b6c54bbc256c93ac5f385
MD5 26aa70850bd8488eec31c57ff5aad558
BLAKE2b-256 251f92e44d5bc603de5584c55c304719b3e208c5a440f1176bc42b82653649ac

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cee12686f108b4e7b610da3ed0a9f8f886b2c2c3f5967d9e14661a1fe1be3236
MD5 d645726946b185114362ae88176d1275
BLAKE2b-256 aa8fe84d7b0b728c9d41148dbbfca77cc759470159a078750e7193bdc8f15a95

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 77.1 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f093e4b3cafc6d40263a916356af775dffc3c16c2d57b443cc3492d1b461cb69
MD5 fb1597451f2b5b990e42ad657b4824b1
BLAKE2b-256 7eb90ef611a3a54fd1930e79f8a25b8c97d6a011463b901c4bc32e42f3478b9d

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 83.1 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1450e18e10b92cd2ac2524b3ef602022f547b62573f1c967678e8ac86574ed39
MD5 17494d34a1e1ee9626ac6b4f790e0791
BLAKE2b-256 5ed2c130233d9f3e96ebe484b4ee21a46cab1697e034a0a504558178f4e31935

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 77.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 54f5c5f44b80899dba881a32e7ef079613814a838944de9898c77d9c39a07ad8
MD5 09ec9c1ed49942903607de2fe563c85e
BLAKE2b-256 1875f40d6b81554f9bffc6ee6bfb319e1cafc6202acb688d6bc2134f91f61eac

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 83.1 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8001f96d55869eca1c39b9f5a3f7eee1be06aca12dcd64c5a920aa8e997dd19a
MD5 08024e6c0922daeb916ae8a0cb0e85ef
BLAKE2b-256 e87325eb801f19797a4c2b4f7fce28fe8002675e0d01f4d60dd8819ea9c81723

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 48.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9ae587da6ad6df7097a16bbd05c841be8b83a5b055abe707f4d9248e1a6d80a0
MD5 ca33710dab159eae535b987ec99578dd
BLAKE2b-256 cf8de0d5f47cfea9a6f921383c22e837613a65040e9c9719a5a678eeca509ada

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 606af6fc57e5b493956f188747b81b308fea5b86af4f8a4b731d0af5f6899a2f
MD5 a36ff1377358bb7a0bb25053a0fd5cdb
BLAKE2b-256 27c0501df5aafae3813359199c0fa3d0e31960591a10dde70f8212a76d35bc88

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 783b8b357d5b32e4b9981b0d066da34b2a4fb8883cdfecefdbfbef6083b6a793
MD5 214e313db470dd6477e9583863f5cf28
BLAKE2b-256 91b52ffe55f32dd12b57e373e15d45a225d82c74a73e44c29f80b82b083a2ebb

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 38fef095cf28c78d737a24eb204de7d2d980e75674f89124c7652b72657b90c1
MD5 4dd9aa756522e87a920cc94e5debb47d
BLAKE2b-256 20a1526a0bf21aca107286ff7df1477c8e4d04c59484cd55707268ec2e367fa1

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4c05bc465542bed3c5b2096d300839765368144970d9cf060336a3649518ee25
MD5 11b3c7425ab902101584d8ce4caf0b4a
BLAKE2b-256 d501fc72d37c991a7f03ca8a02a46831d882a0b714aa047d0beb0df94e1c9be4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 82.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 66b3d49eef1182fc5b2042b059901db974794d54de3b35efd329d594d29c7aa1
MD5 6b1f42a134fc14ce5b64f36692c26560
BLAKE2b-256 4ac1419209627a77608efb14d8cc5210b2566c9702f78886ed49dc422ba99248

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 48.8 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 c0b81a18ec6f621299a5c8acc70931dd751ebcdddb2fc39a1db21aa51adc9309
MD5 a6ca114f436438ff2ec2f8f4a7437d77
BLAKE2b-256 343587a044ae4290734cd00a6b7427dc7c26eda02f3007d48d9bc7edb92a8918

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 46.6 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 4acfecd31dbc93cac92ac1d4c2b726cb010a9a6ffb604cd929961d4b5bd1bbff
MD5 40144724b88b63c10d6b5a40dd668838
BLAKE2b-256 28a0f98ecfca025ca80885a37c8c09be50c13ca6bcdc6609982864e58bc313a0

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.5 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b362d4b67195bf9aa81695c1d1433a85beb7d2f4c7e67237079923f75f836bd9
MD5 e5e581635a876b5f38a44bbfdcd2cf52
BLAKE2b-256 987b1035577bf83cea917d35380ff938e5f68068a19c305a9a1c1dd2ca3f205c

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.0 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b6413d489e66dd10dc6042263a4f3277da9360bdfd5266b1963e7186b70af660
MD5 07d0c3abe6b7e2a62c6ab3fcad1d5b33
BLAKE2b-256 7caafb4a01ee6f0c08e4ab6f3ce76e0be794e63e937570e28acf063066b48da6

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.5 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 142495c28d25150660a4229f96aff4443ebc1304522208c1b2302ba80ecfd4b5
MD5 fd2ac863fbd36a08cd13e82cdb0f676b
BLAKE2b-256 2a0f40546215d7a44fef2ad502bd1e6da7f6825c8691eb1860536164271c95a0

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 82.0 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 04bd8a6ae753afbc225934c63281e63d8c4b19afce7036244cb73372b5807b4e
MD5 a9491cba44547756158be8e821a7fd91
BLAKE2b-256 0a90d256e235001fdb895802c917c511827f0bb34a8ab7e416b1477b6274def7

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 87.3 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1f6684b1143dd99eada316d64a83dd0f02bed0001acffd096cdcf6f971253a25
MD5 9e70cf03b05867c41865292075cb9f7d
BLAKE2b-256 6f1ae00d24bdcce99a4a744566fcb12aaa1a38e91cf9c9d3ad3d37b7f77e640a

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 eeadb2bcd40b6c8783f2e48ba09eba0c4b248c5871821783fe6dd396f49b4b4a
MD5 3b3ee6ec0a3828a11b6ca1c8f81d1e96
BLAKE2b-256 d6bc73086e21e42c5fe430a8bd001a8511a97a29501a1bf8a9500cfb1d1554cc

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 87.3 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 85a572215a04ca4df919b6b0a0d7a49d341716bc95f06615f2f6832b2ed96c89
MD5 308d6265b369cefd869717347ef749db
BLAKE2b-256 c64a18602a436ebff6ccacb0ad3ad856f637c400eb6a0fd28f4d0c57160bb627

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5efe31683d3e337876297dafffab59574fecfde71742ca452cf5faaf022b1603
MD5 3c0fc7c0dc2d046d0a094751dbbb107a
BLAKE2b-256 9bc3f84c2f61afd0617485349dbd00c43963f61ea12135ff46a9b63a70278427

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 87.3 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3704ec67c89a33fb30515f1af6d23c92bfc0cd18bd5279176bef966f35849f15
MD5 f94a1ee98a0731015f1519df843a61de
BLAKE2b-256 155fbfd634a3669c913d58382e6ad7d9ccb5741752b8cd8c1ff87c3506c4584e

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b1e286135ffa77efbc14ed09277c2fcae0c77d0b52be5ac02029214ca7f15667
MD5 f8c1189740203232efaccedfe06b9af4
BLAKE2b-256 847fcf5ae18375166e49b4b7cbed1b851c8186265138206d9ec925aa2b0755a5

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 87.3 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 179a7e5d5429ef1272e918004284af4b8a0b6340c90745b586c20f55e8b955ae
MD5 a793b977c7ad5dfdc19a086f9e850b0d
BLAKE2b-256 9772f77ac7b25f56ecd2745ddb6527734d95758fa8edb6956a79ce66d5ada57c

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.0.2rc1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4845d0df7c8fd0528334f7812a2e58c20a98943a7ec43b934732b73392ef820e
MD5 69030ed16496d4035de8c1e78718b92a
BLAKE2b-256 7f090974dd5bf2afbf6107ecadf6b73cabaaa66f1cb9b2a72fba284cabfa41a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page