Skip to main content

Python interface for the NRLMSISE-00 neutral atmosphere model

Project description

PyNRLMSISE-00

Python interface for the NRLMSISE-00 empirical neutral atmosphere model

builds docs package wheel pyversions codecov coveralls scrutinizer

This python version of the NRLMSISE00 upper atmosphere model is based on the C-version of the code, available at www.brodo.de/space/nrlmsise. The C code is imported as a git submodule from git://git.linta.de/~brodo/nrlmsise-00.git (browsable version at: https://git.linta.de/?p=~brodo/nrlmsise-00.git).

:warning: This python interface is in the beta stage, that is, it should work but may still have some bugs. The interface is supposed to be stable but may still change slightly in future versions.

Documentation can be found at https://pynrlmsise00.readthedocs.io

Quote from https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=MSISE:

“The MSISE model describes the neutral temperature and densities in Earth's atmosphere from ground to thermospheric heights. The NRLMSIS-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and Doug Drob.”

Install

Requirements

  • numpy - required
  • spaceweather and xarray - optional, for the datatset sub-package, see below
  • pytest - optional, for testing
  • sphinx - optional, to build the documentation

To compile the C source code, additional system header files may be required. For example on Debian/Ubuntu Linux, the package libc6-dev is needed.

pynrlmsise00

A pip package called nrlmsise00 is available from the main package repository, and can be installed with:

$ pip install nrlmsise00

In some cases this will install from the source package and the note above about the additional requirements applies.

As binary package support is limited, pynrlmsise00 can be installed with pip directly from github (see https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support and https://pip.pypa.io/en/stable/reference/pip_install/#git):

$ pip install [-e] git+https://github.com/st-bender/pynrlmsise00.git

The other option is to use a local clone:

$ git clone https://github.com/st-bender/pynrlmsise00.git
$ cd pynrlmsise00
$ git submodule init
$ git submodule update

and then using pip (optionally using -e, see https://pip.pypa.io/en/stable/reference/pip_install/#install-editable):

$ pip install [-e] .

or using setup.py:

$ python setup.py install

Optionally, test the correct function of the module with

$ py.test [-v]

or even including the doctests in this document:

$ py.test [-v] --doctest-glob='*.md'

Usage

The python module itself is named nrlmsise00 and is imported as usual:

>>> import nrlmsise00

Basic class and method documentation is accessible via pydoc:

$ pydoc nrlmsise00

Python interface

The Python interface functions take datetime.datetime objects for convenience. The local solar time is calculated from that time and the given location, but it can be set explicitly via the lst keyword. The returned value has the same format as the original C version (see below). Because of their similarity, gtd7() and gtd7d() are selected via the method keyword, gtd7 is the default.

The return values are tuples of two lists containing the densities (d[0]--d[8]) and temperatures (t[0], t[1]).

The output has the same order as the C reference code, in particular:

  • d[0] - He number density [cm⁻³]
  • d[1] - O number density [cm⁻³]
  • d[2] - N2 number density [cm⁻³]
  • d[3] - O2 number density [cm⁻³]
  • d[4] - Ar number density [cm⁻³]
  • d[5] - total mass density [g cm⁻³]) (includes d[8] in gtd7d())
  • d[6] - H number density [cm⁻³]
  • d[7] - N number density [cm⁻³]
  • d[8] - Anomalous oxygen number density [cm⁻³]
  • t[0] - exospheric temperature [K]
  • t[1] - temperature at alt [K]

The flags and ap_a value array are set via keywords, but both default to the standard setting, such that changing them should not be necessary for most use cases. For example setting flag[0] to 1 changes the output to metres and kilograms instead of centimetres and grams (0 is the default).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_model
>>> msise_model(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4, lst=16)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

NumPy interface

A numpy compatible flat version is available as msise_flat(), it returns a 11-element numpy.ndarray with the densities in the first 9 entries and the temperatures in the last two entries. That is ret = numpy.ndarray([d[0], ..., d[8], t[0], t[1]]).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_flat
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4)
array([5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
       1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
       2.66727321e+04, 1.10058413e+03, 1.09824872e+03])

All arguments can be numpy.ndarrays, but must be broadcastable to a common shape. For example to calculate the values for three altitudes (200, 300, and 400 km) and two latitude locations (60 and 70 °N) simultaneously, one can use numpy.newaxis (which is equal to None) like this:

>>> from datetime import datetime
>>> import numpy as np
>>> from nrlmsise00 import msise_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), alts[None, :], lats[:, None], -70, 150, 150, 4)
array([[[1.36949418e+06, 1.95229496e+09, 3.83824808e+09, 1.79130515e+08,
         4.92145034e+06, 2.40511268e-13, 8.34108685e+04, 1.74317585e+07,
         3.45500931e-08, 1.10058413e+03, 9.68827485e+02],
        [8.40190601e+05, 3.25739060e+08, 1.82477392e+08, 5.37973134e+06,
         6.53609278e+04, 1.75304136e-14, 5.92944463e+04, 4.36516218e+06,
         1.03939126e+02, 1.10058413e+03, 1.08356514e+03],
        [5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
         1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
         2.66727321e+04, 1.10058413e+03, 1.09824872e+03]],
<BLANKLINE>
       [[1.10012225e+06, 1.94725472e+09, 4.08547233e+09, 1.92320077e+08,
         6.65460281e+06, 2.52846563e-13, 6.16745965e+04, 2.45012145e+07,
         5.21846603e-08, 1.13812434e+03, 1.00132640e+03],
        [6.83809952e+05, 3.42643970e+08, 2.13434661e+08, 6.43426889e+06,
         1.01162173e+05, 1.95300073e-14, 4.36031132e+04, 6.70490625e+06,
         1.59911615e+02, 1.13812434e+03, 1.12084651e+03],
        [4.65787225e+05, 7.52160226e+07, 1.51795904e+07, 3.13560147e+05,
         2.32541183e+03, 2.76353370e-15, 3.92811827e+04, 1.73321928e+06,
         4.12296154e+04, 1.13812434e+03, 1.13580463e+03]]])

Xarray Dataset interface

Output to a 4-D xarray.Dataset is supported via the dataset submodule which can be installed with:

pip install [-U] 'nrlmsise00[dataset]'

This module provides a 4-D version msise_4d() to broadcast the 1-D inputs for time, altitude, latitude, and longitude. It also uses the spaceweather package by default to automatically obtain the geomagnetic and Solar flux indices. The variable names are set according to the MSIS output.

>>> from datetime import datetime
>>> from nrlmsise00.dataset import msise_4d
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> lons = np.arange(-70., 71., 35.)  # = [-70, -35,  0, 35, 70] [°E]
>>> # broadcasting is done internally
>>> ds = msise_4d(datetime(2009, 6, 21, 8, 3, 20), alts, lats, lons)
>>> ds
<xarray.Dataset>
Dimensions:  (alt: 3, lat: 2, lon: 5, time: 1)
Coordinates:
  * time     (time) datetime64[ns] 2009-06-21T08:03:20
  * alt      (alt) float64 200.0 300.0 400.0
  * lat      (lat) float64 60.0 70.0
  * lon      (lon) float64 -70.0 -35.0 0.0 35.0 70.0
Data variables:
    He       (time, alt, lat, lon) float64 8.597e+05 1.063e+06 ... 4.936e+05
    O        (time, alt, lat, lon) float64 1.248e+09 1.46e+09 ... 2.635e+07
    N2       (time, alt, lat, lon) float64 2.555e+09 2.654e+09 ... 1.667e+06
    O2       (time, alt, lat, lon) float64 2.1e+08 2.062e+08 ... 3.471e+04
    Ar       (time, alt, lat, lon) float64 3.16e+06 3.287e+06 ... 76.55 67.16
    rho      (time, alt, lat, lon) float64 1.635e-13 1.736e-13 ... 7.984e-16
    H        (time, alt, lat, lon) float64 3.144e+05 3.02e+05 ... 1.237e+05
    N        (time, alt, lat, lon) float64 9.095e+06 1.069e+07 ... 6.765e+05
    AnomO    (time, alt, lat, lon) float64 1.173e-08 1.173e-08 ... 1.101e+04
    Texo     (time, alt, lat, lon) float64 805.2 823.7 807.1 ... 818.7 821.2
    Talt     (time, alt, lat, lon) float64 757.9 758.7 766.4 ... 818.7 821.1
    lst      (time, lon) float64 3.389 5.722 8.056 10.39 12.72
    Ap       (time) int32 6
    f107     (time) float64 66.7
    f107a    (time) float64 69.0

C model interface

The C submodule directly interfaces the model functions gtd7() and gtd7d() by importing nrlmsise00._nrlmsise00.

>>> from nrlmsise00._nrlmsise00 import gtd7, gtd7d
>>> # using the standard flags
>>> gtd7(2009, 172, 29000, 400, 60, -70, 16, 150, 150, 4)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

This module also provides "flat" variants of the C functions as gtd7_flat() and gtd7d_flat(). For example using gtd7() the same way as above:

>>> import numpy as np
>>> from nrlmsise00 import gtd7_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> gtd7_flat(2009, 172, 29000, alts[None, :], lats[:, None], -70, 16, 150, 150, 4)
array([[[1.55567936e+06, 2.55949597e+09, 4.00342724e+09, 1.74513806e+08,
         6.56916263e+06, 2.64872982e-13, 5.63405578e+04, 4.71893934e+07,
         3.45500931e-08, 1.25053994e+03, 1.02704994e+03],
        [9.58507714e+05, 4.66979460e+08, 2.31041924e+08, 6.58659651e+06,
         1.16566762e+05, 2.38399390e-14, 3.86535595e+04, 1.43755262e+07,
         1.03939126e+02, 1.25053994e+03, 1.20645403e+03],
        [6.66517690e+05, 1.13880556e+08, 1.99821093e+07, 4.02276359e+05,
         3.55746499e+03, 4.07471353e-15, 3.47531240e+04, 4.09591327e+06,
         2.66727321e+04, 1.25053994e+03, 1.24141613e+03]],
<BLANKLINE>
       [[1.31669842e+06, 2.40644124e+09, 4.21778196e+09, 1.89878716e+08,
         8.17662024e+06, 2.71788520e-13, 4.64192484e+04, 5.13265845e+07,
         5.21846603e-08, 1.24246351e+03, 1.04698385e+03],
        [8.22632403e+05, 4.52803942e+08, 2.53857090e+08, 7.50201654e+06,
         1.53431033e+05, 2.46179628e-14, 3.20594861e+04, 1.62651506e+07,
         1.59911615e+02, 1.24246351e+03, 1.20963726e+03],
        [5.73944168e+05, 1.10836468e+08, 2.19925518e+07, 4.58648922e+05,
         4.68600377e+03, 4.10277781e-15, 2.89330169e+04, 4.65636025e+06,
         4.12296154e+04, 1.24246351e+03, 1.23665288e+03]]])

Note

All functions require the solar 10.7 cm radio flux and and the geomagnetic Ap index values to produce correct results. In particular, according to the C source code:

  • f107A: 81 day average of F10.7 flux (centered on the given day of year)
  • f107: daily F10.7 flux for previous day
  • ap: magnetic index (daily)

The f107 and f107A values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values (outdated): ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

More up-to-date index files can be found at https://celestrak.com/SpaceData/, which are also provided by the spaceweather package.

f107, f107A, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150., 150., and 4. respectively.

License

This python interface is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see local copy or online version.

The C source code of NRLMSISE-00 is in the public domain, see COPYING.NRLMSISE-00.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nrlmsise00-0.1.1.tar.gz (64.0 kB view details)

Uploaded Source

Built Distributions

nrlmsise00-0.1.1-cp39-cp39-win_amd64.whl (49.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

nrlmsise00-0.1.1-cp39-cp39-manylinux2010_x86_64.whl (89.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.1-cp39-cp39-manylinux1_x86_64.whl (89.5 kB view details)

Uploaded CPython 3.9

nrlmsise00-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl (54.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nrlmsise00-0.1.1-cp38-cp38-win_amd64.whl (49.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

nrlmsise00-0.1.1-cp38-cp38-manylinux2010_x86_64.whl (89.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.1-cp38-cp38-manylinux1_x86_64.whl (89.5 kB view details)

Uploaded CPython 3.8

nrlmsise00-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl (54.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nrlmsise00-0.1.1-cp37-cp37m-win_amd64.whl (49.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

nrlmsise00-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl (90.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.1-cp37-cp37m-manylinux1_x86_64.whl (90.6 kB view details)

Uploaded CPython 3.7m

nrlmsise00-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (54.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

nrlmsise00-0.1.1-cp36-cp36m-win_amd64.whl (49.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

nrlmsise00-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl (89.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.1-cp36-cp36m-manylinux1_x86_64.whl (89.6 kB view details)

Uploaded CPython 3.6m

nrlmsise00-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl (54.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

nrlmsise00-0.1.1-cp35-cp35m-win_amd64.whl (49.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

nrlmsise00-0.1.1-cp35-cp35m-manylinux2010_x86_64.whl (89.4 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.1-cp35-cp35m-manylinux1_x86_64.whl (89.4 kB view details)

Uploaded CPython 3.5m

nrlmsise00-0.1.1-cp35-cp35m-macosx_10_9_x86_64.whl (54.3 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

nrlmsise00-0.1.1-cp34-cp34m-manylinux1_x86_64.whl (71.1 kB view details)

Uploaded CPython 3.4m

nrlmsise00-0.1.1-cp27-cp27mu-manylinux2010_x86_64.whl (88.2 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.1-cp27-cp27mu-manylinux1_x86_64.whl (88.2 kB view details)

Uploaded CPython 2.7mu

nrlmsise00-0.1.1-cp27-cp27m-manylinux2010_x86_64.whl (88.2 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.1-cp27-cp27m-manylinux1_x86_64.whl (88.2 kB view details)

Uploaded CPython 2.7m

nrlmsise00-0.1.1-cp27-cp27m-macosx_10_9_x86_64.whl (54.2 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file nrlmsise00-0.1.1.tar.gz.

File metadata

  • Download URL: nrlmsise00-0.1.1.tar.gz
  • Upload date:
  • Size: 64.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1.tar.gz
Algorithm Hash digest
SHA256 1bfef90cefbaa8a9fd8ca4bd1e11717d5fffb9ec1bd1cd42181e107ac4bcfaa0
MD5 8d597f30088fe1f7ce64097ee41cd6ae
BLAKE2b-256 805a1cf75ed718766e90ea1d77397ff074d39a84b02c2e99ee30be813b0c1cb8

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 49.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3608d8f64b4b92528091bd19c7e22111d171d5550503ab092b3af5a5be000761
MD5 f4bdf13a0b98595eb84a575ee90c287c
BLAKE2b-256 1529d199463a95f10f09bf69f184ee5376824ea8ed1a2197153c32721a00b8f6

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 89.5 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 280cdc483f082946e345624616a1fee43a764b88878be80fcacd025dbc653da6
MD5 1c480a9f7ffa97442871c9036999f366
BLAKE2b-256 504e6ed73592ed352b221460ce36725d23fd22bf41c73bc782ea0d62c68a88c0

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 89.5 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a10878598a3bf6ea5c213296551f0cc947feea650b75650151392d0719fa8bb8
MD5 8b958110238fb8ec991c30e1aaa84072
BLAKE2b-256 cf37414c07a1d4fba90ecc59db8dd01a2f1d3754d1adf91414b91ee96902e474

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 54.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da4d1e1f11c778b081940d9e019f5583bc10ff7124d796a1b8568d8573b56d44
MD5 8cee67927b4e1abbf63d72d8edf59e41
BLAKE2b-256 7841fc399a028cd50cd446892130e18d5d43b3a35b647c52a48e699e6a87a4cd

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 49.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2f2a0cc9fb9fcd625a9a8b36ca426b0cc676d704d8e3114e1497309f6a8226be
MD5 3f62be32e28c19b06af91b8ce2a111e6
BLAKE2b-256 b9027f7503fb7c16db245720f38c64d16d4a4a03f4b39d705f3ac58737ea05aa

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 89.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3818d31ea67db55d038f8611ebecc070b5367d9ffd6d694ddb4f4e96171c1b75
MD5 edf601c49b9e1228372c0d04108f8135
BLAKE2b-256 cde1e6b3c820ba11e90de42947f36fcae3711b8aa20403dc6c25049c277c1712

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 89.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2b88a549a33adca6edc1fcfd541c1c1888f0d5a7bd8746e20b4bcdf38b0f3661
MD5 29b9c4d652c0ae74b3737dcc9316071e
BLAKE2b-256 7a55a0a804dd839fbca9c962d4b23b808bf874a5c456d973db0caceaff9fa9ae

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad0ced5faf20ae304d4bbfbb27923a6b6542959a5d475e369fa895932bafb0db
MD5 25111be7e91df48b45273fe1a2ed6f2a
BLAKE2b-256 112c1b3f34f0c998ba9f7f390167f34b8f85596c37e58de787348f8df66e9e34

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 49.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 09f590702c51d6265e3d6421f7b4b538b370a5d923ca3b806dceca09d476322a
MD5 7414e043838982504e071c63a9d353c3
BLAKE2b-256 11d0aa59113fe4e76f2d4a94ccd6cec00cc24de8a3e9ddba198ed6a27b64a159

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 90.6 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 50bb0583646edd41a49d0092cab2557b5dff039c1ef6a17fd156343749d0379e
MD5 cd2e5bf5c612eca640ad0d45f095d4d1
BLAKE2b-256 df779cce2ac35ac0c9b1f7eacabda7144fe82bff54d884bdfcbc7485a9d41af2

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 90.6 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e661c68ee446bb505581fb928b306772ce1af36bb49387e0f01f8d4cb70a5daf
MD5 590350ac8d08e1a2a224e6781797d4c2
BLAKE2b-256 8196204f4b505b5538141f0a1fdd351f4a1b574e81f2135a06b88db332bf388f

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8105fda6407733051f9159974045ab1d8802a14fb24537465121661035f37a3a
MD5 61b5995078cde6667d4a32d6ba546230
BLAKE2b-256 13c2af136a7eb186e0902efa4df16e054577347907b3aff922e490d0caecfe2a

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 49.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7ccffcd3ee1057faa47a4396ca832ab2f6f9a4f064020317fd8468f173c726d7
MD5 3e45a10e0812091de3c03032d6931a37
BLAKE2b-256 2c8593a932260d2c9345ab7de3465ccef9c93045ef3c4696d7ae9db06bdfdc1c

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3ea6c0981ef23238157ccac628ace1cdbfccb3364062a1711d0132b7da2fc4f
MD5 a8ac056278791eb9f8fc8ed3b175c534
BLAKE2b-256 95689d2dacfd6c7ebde3d2a26a5d8f9bd38cc660c003155d0b647c63e5840230

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8d8c39a303032adf563188f66374a1f7ae6a65369baa71c3a95a9a8985d9ae32
MD5 a11d47775c7f6ea0435f858428f5c8e3
BLAKE2b-256 122b4c1c1feb72119b9ce95ed42757cf96c762bc6090956ac09c1e10dc9d96c9

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48e63707a1e3790ff947e56c3c686058291004bc0fdcfffd23e16a60e88b2859
MD5 d634d8a1117011b0294ae17548d67556
BLAKE2b-256 7e00ddb08fc2869861dfc81382f0844b7df0fb208e3b6959b1ae58edd3d98748

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 49.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3441d1d9100dee0459c15dc1c0c9c1c9110713551a62674c71c28911485cb13a
MD5 8b8e817b2a8b175499063dde97e8d5b5
BLAKE2b-256 c8d3a8fc2cbc91c7c2070089d34cac3c04c49bccb8ef56a6bc76cede3a109038

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 89.4 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 62046f96dc9c1b67405efbef39515dbe0f310ca700eb1bb990867e16d5fd6180
MD5 2775c7a7a1a006cc9d8ef81a767eaf30
BLAKE2b-256 6617ab5d6c6e84a881887c64b95154d6a53d3058c14b59405e5eca75e72f9cc1

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 89.4 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 52e26681871f775b96c140473cefb6f3f4661cd2900eb203b30e5e3786daff4f
MD5 19a3f0c08eaded7607c467d7d2247d01
BLAKE2b-256 bdc02e763614bf8e9864b55de8b28ba1543e97aa2d99ce194eade5d3531648db

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d30938428459b287035ec12d6570360865e8854a1674e0d5ca9ca6c5cbe6ce9
MD5 bb8d595ab5760ec333963e3af732cdc8
BLAKE2b-256 6512f2b066afc2925de827fb38443752aa046464a74298663c2040d30f419f60

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 71.1 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2fe7118cf5fea5dd21391368cd2db30e8bb8b49bd60e7fc1dbfb6a93b73346da
MD5 01cb2faa17d5c3c0f8297da67459de57
BLAKE2b-256 c68363ef1459e6ec1f64e07d4d1c9f2211ffc87f88ecf6a2b917aff39b83bb8a

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a7753e50b108fa5cbe4f32b611f38d296373d9454d9110be6c68a891ca417fc5
MD5 6ae8e77321e4fe89b71498eb08e4b455
BLAKE2b-256 fbff5f77f3c4eddcbc59055d1314ffc7e3048965ef22b079faabe3982eb173c7

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9d7d7ff7f3ae4ff67da906f13f0f28e41b155f64b766d5e38f19f65065c85e5e
MD5 13d39ac3ecfe5a4f028c4eaa28b50726
BLAKE2b-256 fd9896f74b3931317890add3b2d941fbde2a2664d7c244833dcd200e094c0ab1

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1f50f4d2e98b9d80cee2a4b950ca140436378c4353c2327148b998076047bee
MD5 ed837e3c3f79417c538e6e5a4de3111a
BLAKE2b-256 20475d3f2fe491eaa02d3c13e69ebe1e78aee4736df7c8ffdc695098f34fc46b

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cb8e3887792d21242efc81f9a99bf8fddb2fe11ad7d1522dfde55e7aebb80750
MD5 c0b4ed8c66f88e2958134e577f64f7dd
BLAKE2b-256 c6ab385bbf3874d06739a7885da081a815c5933e3e6df5b1ab81dd95a919454e

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for nrlmsise00-0.1.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 496d677a58f8cee6c4ba42e053aca9760c0c50ddab89ff51904b74c8b3f459ff
MD5 7af9b4dee237b8c427815ceaa41c57b1
BLAKE2b-256 a85df698ea0bd01081b7ddff66b9d47ba5ec685d9d567a6e9cfa209ab4932d63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page