Skip to main content

Python interface for the NRLMSISE-00 neutral atmosphere model

Project description

PyNRLMSISE-00

Python interface for the NRLMSISE-00 empirical neutral atmosphere model

builds docs package wheel pyversions codecov coveralls scrutinizer

This python version of the NRLMSISE00 upper atmosphere model is based on the C-version of the code, available at https://www.brodo.de/space/nrlmsise. The C code is imported as a git submodule from git://git.linta.de/~brodo/nrlmsise-00.git (browsable version at: https://git.linta.de/?p=~brodo/nrlmsise-00.git).

:warning: This python interface is in the beta stage, that is, it should work but may still have some bugs. The interface is supposed to be stable but may still change slightly in future versions.

Documentation can be found at https://pynrlmsise00.readthedocs.io, and development happens on github https://github.com/st-bender/pynrlmsise00.

Quote from https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=MSISE:

“The MSISE model describes the neutral temperature and densities in Earth's atmosphere from ground to thermospheric heights. The NRLMSIS-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and Doug Drob.”

Install

Requirements

  • numpy - required
  • spaceweather and xarray - optional, for the datatset sub-package, see below
  • pytest - optional, for testing
  • sphinx - optional, to build the documentation

To compile the C source code, additional system header files may be required. For example on Debian/Ubuntu Linux, the package libc6-dev is needed.

pynrlmsise00

A pip package called nrlmsise00 is available from the main package repository, and can be installed with:

$ pip install nrlmsise00

In some cases this will install from the source package and the note above about the additional requirements applies.

As binary package support is limited, pynrlmsise00 can be installed with pip directly from github (see https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support and https://pip.pypa.io/en/stable/reference/pip_install/#git):

$ pip install [-e] git+https://github.com/st-bender/pynrlmsise00.git

The other option is to use a local clone:

$ git clone https://github.com/st-bender/pynrlmsise00.git
$ cd pynrlmsise00
$ git submodule init
$ git submodule update

and then using pip (optionally using -e, see https://pip.pypa.io/en/stable/reference/pip_install/#install-editable):

$ pip install [-e] .

or using setup.py:

$ python setup.py install

Optionally, test the correct function of the module with

$ py.test [-v]

or even including the doctests in this document:

$ py.test [-v] --doctest-glob='*.md'

Usage

The python module itself is named nrlmsise00 and is imported as usual:

>>> import nrlmsise00

Basic class and method documentation is accessible via pydoc:

$ pydoc nrlmsise00

Python interface

The Python interface functions take datetime.datetime objects for convenience. The local solar time is calculated from that time and the given location, but it can be set explicitly via the lst keyword. The returned value has the same format as the original C version (see below). Because of their similarity, gtd7() and gtd7d() are selected via the method keyword, gtd7 is the default.

The return values are tuples of two lists containing the densities (d[0]--d[8]) and temperatures (t[0], t[1]).

The output has the same order as the C reference code, in particular:

  • d[0] - He number density [cm⁻³]
  • d[1] - O number density [cm⁻³]
  • d[2] - N2 number density [cm⁻³]
  • d[3] - O2 number density [cm⁻³]
  • d[4] - Ar number density [cm⁻³]
  • d[5] - total mass density [g cm⁻³]) (includes d[8] in gtd7d())
  • d[6] - H number density [cm⁻³]
  • d[7] - N number density [cm⁻³]
  • d[8] - Anomalous oxygen number density [cm⁻³]
  • t[0] - exospheric temperature [K]
  • t[1] - temperature at alt [K]

The flags and ap_a value array are set via keywords, but both default to the standard setting, such that changing them should not be necessary for most use cases. For example setting flag[0] to 1 changes the output to metres and kilograms instead of centimetres and grams (0 is the default).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_model
>>> msise_model(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4, lst=16)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

NumPy interface

A numpy compatible flat version is available as msise_flat(), it returns a 11-element numpy.ndarray with the densities in the first 9 entries and the temperatures in the last two entries. That is ret = numpy.ndarray([d[0], ..., d[8], t[0], t[1]]).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_flat
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4)
array([5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
       1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
       2.66727321e+04, 1.10058413e+03, 1.09824872e+03])

All arguments can be numpy.ndarrays, but must be broadcastable to a common shape. For example to calculate the values for three altitudes (200, 300, and 400 km) and two latitude locations (60 and 70 °N) simultaneously, one can use numpy.newaxis (which is equal to None) like this:

>>> from datetime import datetime
>>> import numpy as np
>>> from nrlmsise00 import msise_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), alts[None, :], lats[:, None], -70, 150, 150, 4)
array([[[1.36949418e+06, 1.95229496e+09, 3.83824808e+09, 1.79130515e+08,
         4.92145034e+06, 2.40511268e-13, 8.34108685e+04, 1.74317585e+07,
         3.45500931e-08, 1.10058413e+03, 9.68827485e+02],
        [8.40190601e+05, 3.25739060e+08, 1.82477392e+08, 5.37973134e+06,
         6.53609278e+04, 1.75304136e-14, 5.92944463e+04, 4.36516218e+06,
         1.03939126e+02, 1.10058413e+03, 1.08356514e+03],
        [5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
         1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
         2.66727321e+04, 1.10058413e+03, 1.09824872e+03]],
<BLANKLINE>
       [[1.10012225e+06, 1.94725472e+09, 4.08547233e+09, 1.92320077e+08,
         6.65460281e+06, 2.52846563e-13, 6.16745965e+04, 2.45012145e+07,
         5.21846603e-08, 1.13812434e+03, 1.00132640e+03],
        [6.83809952e+05, 3.42643970e+08, 2.13434661e+08, 6.43426889e+06,
         1.01162173e+05, 1.95300073e-14, 4.36031132e+04, 6.70490625e+06,
         1.59911615e+02, 1.13812434e+03, 1.12084651e+03],
        [4.65787225e+05, 7.52160226e+07, 1.51795904e+07, 3.13560147e+05,
         2.32541183e+03, 2.76353370e-15, 3.92811827e+04, 1.73321928e+06,
         4.12296154e+04, 1.13812434e+03, 1.13580463e+03]]])

Xarray Dataset interface

Output to a 4-D xarray.Dataset is supported via the dataset submodule which can be installed with:

pip install [-U] 'nrlmsise00[dataset]'

This module provides a 4-D version msise_4d() to broadcast the 1-D inputs for time, altitude, latitude, and longitude. It also uses the spaceweather package by default to automatically obtain the geomagnetic and Solar flux indices. The variable names are set according to the MSIS output.

>>> from datetime import datetime
>>> from nrlmsise00.dataset import msise_4d
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> lons = np.arange(-70., 71., 35.)  # = [-70, -35,  0, 35, 70] [°E]
>>> # broadcasting is done internally
>>> ds = msise_4d(datetime(2009, 6, 21, 8, 3, 20), alts, lats, lons)
>>> ds
<xarray.Dataset>
Dimensions:  (alt: 3, lat: 2, lon: 5, time: 1)
Coordinates:
  * time     (time) datetime64[ns] 2009-06-21T08:03:20
  * alt      (alt) float64 200.0 300.0 400.0
  * lat      (lat) float64 60.0 70.0
  * lon      (lon) float64 -70.0 -35.0 0.0 35.0 70.0
Data variables:
    He       (time, alt, lat, lon) float64 8.597e+05 1.063e+06 ... 4.936e+05
    O        (time, alt, lat, lon) float64 1.248e+09 1.46e+09 ... 2.635e+07
    N2       (time, alt, lat, lon) float64 2.555e+09 2.654e+09 ... 1.667e+06
    O2       (time, alt, lat, lon) float64 2.1e+08 2.062e+08 ... 3.471e+04
    Ar       (time, alt, lat, lon) float64 3.16e+06 3.287e+06 ... 76.55 67.16
    rho      (time, alt, lat, lon) float64 1.635e-13 1.736e-13 ... 7.984e-16
    H        (time, alt, lat, lon) float64 3.144e+05 3.02e+05 ... 1.237e+05
    N        (time, alt, lat, lon) float64 9.095e+06 1.069e+07 ... 6.765e+05
    AnomO    (time, alt, lat, lon) float64 1.173e-08 1.173e-08 ... 1.101e+04
    Texo     (time, alt, lat, lon) float64 805.2 823.7 807.1 ... 818.7 821.2
    Talt     (time, alt, lat, lon) float64 757.9 758.7 766.4 ... 818.7 821.1
    lst      (time, lon) float64 3.389 5.722 8.056 10.39 12.72
    Ap       (time) int32 6
    f107     (time) float64 66.7
    f107a    (time) float64 69.0

C model interface

The C submodule directly interfaces the model functions gtd7() and gtd7d() by importing nrlmsise00._nrlmsise00.

>>> from nrlmsise00._nrlmsise00 import gtd7, gtd7d
>>> # using the standard flags
>>> gtd7(2009, 172, 29000, 400, 60, -70, 16, 150, 150, 4)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

This module also provides "flat" variants of the C functions as gtd7_flat() and gtd7d_flat(). For example using gtd7() the same way as above:

>>> import numpy as np
>>> from nrlmsise00 import gtd7_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> gtd7_flat(2009, 172, 29000, alts[None, :], lats[:, None], -70, 16, 150, 150, 4)
array([[[1.55567936e+06, 2.55949597e+09, 4.00342724e+09, 1.74513806e+08,
         6.56916263e+06, 2.64872982e-13, 5.63405578e+04, 4.71893934e+07,
         3.45500931e-08, 1.25053994e+03, 1.02704994e+03],
        [9.58507714e+05, 4.66979460e+08, 2.31041924e+08, 6.58659651e+06,
         1.16566762e+05, 2.38399390e-14, 3.86535595e+04, 1.43755262e+07,
         1.03939126e+02, 1.25053994e+03, 1.20645403e+03],
        [6.66517690e+05, 1.13880556e+08, 1.99821093e+07, 4.02276359e+05,
         3.55746499e+03, 4.07471353e-15, 3.47531240e+04, 4.09591327e+06,
         2.66727321e+04, 1.25053994e+03, 1.24141613e+03]],
<BLANKLINE>
       [[1.31669842e+06, 2.40644124e+09, 4.21778196e+09, 1.89878716e+08,
         8.17662024e+06, 2.71788520e-13, 4.64192484e+04, 5.13265845e+07,
         5.21846603e-08, 1.24246351e+03, 1.04698385e+03],
        [8.22632403e+05, 4.52803942e+08, 2.53857090e+08, 7.50201654e+06,
         1.53431033e+05, 2.46179628e-14, 3.20594861e+04, 1.62651506e+07,
         1.59911615e+02, 1.24246351e+03, 1.20963726e+03],
        [5.73944168e+05, 1.10836468e+08, 2.19925518e+07, 4.58648922e+05,
         4.68600377e+03, 4.10277781e-15, 2.89330169e+04, 4.65636025e+06,
         4.12296154e+04, 1.24246351e+03, 1.23665288e+03]]])

Note

All functions require the solar 10.7 cm radio flux and and the geomagnetic Ap index values to produce correct results. In particular, according to the C source code:

  • f107A: 81 day average of F10.7 flux (centered on the given day of year)
  • f107: daily F10.7 flux for previous day
  • ap: magnetic index (daily)

The f107 and f107A values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values (outdated): ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

More up-to-date index files can be found at https://celestrak.com/SpaceData/, which are also provided by the spaceweather package.

f107, f107A, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150., 150., and 4. respectively.

License

This python interface is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see local copy or online version.

The C source code of NRLMSISE-00 is in the public domain, see COPYING.NRLMSISE-00.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nrlmsise00-0.1.2.tar.gz (64.8 kB view details)

Uploaded Source

Built Distributions

nrlmsise00-0.1.2-cp312-cp312-win_amd64.whl (54.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

nrlmsise00-0.1.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

nrlmsise00-0.1.2-cp312-cp312-macosx_10_9_x86_64.whl (54.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

nrlmsise00-0.1.2-cp311-cp311-win_amd64.whl (54.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

nrlmsise00-0.1.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

nrlmsise00-0.1.2-cp311-cp311-macosx_10_9_x86_64.whl (54.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nrlmsise00-0.1.2-cp310-cp310-win_amd64.whl (54.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

nrlmsise00-0.1.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (86.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

nrlmsise00-0.1.2-cp310-cp310-macosx_10_9_x86_64.whl (54.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nrlmsise00-0.1.2-cp39-cp39-win_amd64.whl (54.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

nrlmsise00-0.1.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (86.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

nrlmsise00-0.1.2-cp39-cp39-manylinux2010_x86_64.whl (90.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.2-cp39-cp39-manylinux1_x86_64.whl (90.0 kB view details)

Uploaded CPython 3.9

nrlmsise00-0.1.2-cp39-cp39-macosx_10_9_x86_64.whl (54.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nrlmsise00-0.1.2-cp38-cp38-win_amd64.whl (54.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

nrlmsise00-0.1.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (86.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

nrlmsise00-0.1.2-cp38-cp38-manylinux2010_x86_64.whl (90.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.2-cp38-cp38-manylinux1_x86_64.whl (90.0 kB view details)

Uploaded CPython 3.8

nrlmsise00-0.1.2-cp38-cp38-macosx_10_9_x86_64.whl (54.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nrlmsise00-0.1.2-cp37-cp37m-win_amd64.whl (54.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

nrlmsise00-0.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

nrlmsise00-0.1.2-cp37-cp37m-manylinux2010_x86_64.whl (91.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.2-cp37-cp37m-manylinux1_x86_64.whl (91.1 kB view details)

Uploaded CPython 3.7m

nrlmsise00-0.1.2-cp37-cp37m-macosx_10_9_x86_64.whl (54.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

nrlmsise00-0.1.2-cp36-cp36m-win_amd64.whl (55.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

nrlmsise00-0.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (86.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

nrlmsise00-0.1.2-cp36-cp36m-manylinux2010_x86_64.whl (90.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.2-cp36-cp36m-manylinux1_x86_64.whl (90.1 kB view details)

Uploaded CPython 3.6m

nrlmsise00-0.1.2-cp36-cp36m-macosx_10_9_x86_64.whl (54.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

nrlmsise00-0.1.2-cp35-cp35m-win_amd64.whl (49.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

nrlmsise00-0.1.2-cp35-cp35m-manylinux2010_x86_64.whl (89.8 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.2-cp35-cp35m-manylinux1_x86_64.whl (89.8 kB view details)

Uploaded CPython 3.5m

nrlmsise00-0.1.2-cp34-cp34m-manylinux1_x86_64.whl (72.3 kB view details)

Uploaded CPython 3.4m

nrlmsise00-0.1.2-cp27-cp27mu-manylinux2010_x86_64.whl (88.7 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.2-cp27-cp27mu-manylinux1_x86_64.whl (88.7 kB view details)

Uploaded CPython 2.7mu

nrlmsise00-0.1.2-cp27-cp27m-manylinux2010_x86_64.whl (88.7 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.2-cp27-cp27m-manylinux1_x86_64.whl (88.7 kB view details)

Uploaded CPython 2.7m

nrlmsise00-0.1.2-cp27-cp27m-macosx_10_9_x86_64.whl (54.5 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file nrlmsise00-0.1.2.tar.gz.

File metadata

  • Download URL: nrlmsise00-0.1.2.tar.gz
  • Upload date:
  • Size: 64.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for nrlmsise00-0.1.2.tar.gz
Algorithm Hash digest
SHA256 db963744986f560e8270f83f9a627485c12e52b199fc4cf532e91984940114fb
MD5 110480e3da4cfa31e235eba140e9798e
BLAKE2b-256 582305e8dcc6fce01571c46e006e40c63101eb3aad764f872999e12857d80851

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6bfedd8c27790c3d00821a41757b7d6707f375e842d547b00f6ad0117fe6b6a7
MD5 7d58e6f900495441298e4a66e7c18453
BLAKE2b-256 499340d0343ea24f5b83bf1a625c049afaa9b3f53196bbc3084cbb2d93839aa2

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 077dc15a454cc289f006bf3722361502b47d2e89dec92840103ea46910a020d8
MD5 86add97621c210baf7e9826c53dbc4d4
BLAKE2b-256 46624c674f40eb68d1efb039b2a6b27362ea9f27b6ed4f30219c498ee21e93a0

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 983741804622161fc6aeeb3b03a34914b9af3e95c25d5d26265176f4821dd9e8
MD5 71856a91b2b52a293a598440fa111463
BLAKE2b-256 c0e7bbc1628c5f6a18373750208339f20b52b809b6b7b3a2fce44c4cdf63674a

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 86b575cabf8752e0d158d802f2963eea4232008a5df452d9c2e7bdb186ab3456
MD5 33c2a4554e237cc9e9b945b99a40c5dc
BLAKE2b-256 9703ffb6eb96ed841f96910f39fe112b9694adcdcfebaee457ba76b9b0a924e2

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 694cc8123b70225762a1e747a62c687eb3324957500060dc6246a03d54119f66
MD5 31809cc7e95fb3c91e7d51b97febd5e6
BLAKE2b-256 93e1d62cf8f3ec36f74974c72afb2f987c3a345c4fc24d328831f12bd03812fe

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a4a614e0186d3a3483cfd9417711888a9f4a52dc3817e8a53c521eaa3f8dd6a
MD5 1331cf5fde29f90254b78df03cc292b4
BLAKE2b-256 1bd329bca464c556a629b97d41d235f7b85de611c29aed973626f8b7846da341

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 14d5523aabaeaa6489d19606e6f51271087c1c8d9e1bc8bce510e2af38b962ef
MD5 9ab2e92c406063dd45adb8deac87490d
BLAKE2b-256 89b4d7cb0a511e6d03714dd6764fa987e06bbe69691774e91c63531b57f1f34b

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed6035edcb589a6da4f5f8ca0218cff173266613197d538e329179fb1f8b9395
MD5 50931ed6d91849d488cc87050961ee8c
BLAKE2b-256 e194eb41172593d10004de4c97bf970983ac835279deda158d1ea3bad7f305ac

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 116e249a8bdf1fd4ee969beaea92095035d2825478017ac497016f7922681a37
MD5 5ddf9a66f3c96d2a69e01b5dc51ddd80
BLAKE2b-256 e8ab96229e1eb410a409317deae1890eef027120c03ff87b2f27e5b03cf1abd7

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7b34168379fe35e617c04961386d017678dba8ee705b46c88517afeb454348ba
MD5 338c7bc6b86afdff6be599b5e8343aff
BLAKE2b-256 ce13ad323e4426c252aff9a7fe1eee78c40e55d8615bc811ab08a4547805d78c

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcccf3f3fcd4a797ae53af7ecffe64c4b35a39b298c5f519b0918c07e651e867
MD5 4ff03ba517aff83851de3ee1518f1b35
BLAKE2b-256 62f2772f1f517bc8b1f7dba83fa52eaff238d00794c9dbe0e28956597dbd0eef

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b263ab9c4efd5eb337e9511dd9d619b4ada516bbddd47f45eaad6b12b675feb5
MD5 bd6691b1aac22ed274d20f9f344634be
BLAKE2b-256 817272133e9f15f230ad2d98d40768f3bf5f17e9311e7f6728b8ce05106df6d0

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ee77b10212c64c335f09df1a61ebadbcd7f02de2c77e999cc9b9d29505d7d0cc
MD5 6e5afb61ab94095ed5dfc1d55131c33e
BLAKE2b-256 e0e004484d52fc8b7038cef3cd9243599a04e6b60093810f12f85f932b8b8b75

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 abbfd0bff59daa2c00d9870bae88285d1dbceb1b04bee69603d061d4082c7606
MD5 1088d33387b9cc5be41174053d43ee43
BLAKE2b-256 a5e855375d1a822e6f9492e92fb6163948b4e97c3bf3cada24f5922d9cb80b2d

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 deaafa360d71afbae0ad6baa419fdcfc54cdd29e59732848a8c4b703d6434803
MD5 4b22ac256fcc053f60b7ef473c9a9184
BLAKE2b-256 717045b1012692e7d016756b7980a2038190e325d5e1a9d0de54d6a4f3c6ede6

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36edf944e3a07f2ffd3a1096127e304d5cad9301cc52e95ad936b1f1b7222ee8
MD5 e55ef47a9a5f4fd9a21b111d8a03880e
BLAKE2b-256 11f827adb507054061b5bb923ead5cdf1829a44e28111d2457aab4699a67e0c5

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7375f1f74c61b744e75c0f885dfd2bb3ae013fe9e35947f62ba1f0793f40aa09
MD5 4da76cec982c779306bbac6eeb11c61a
BLAKE2b-256 bf48fcc823a695c4e5899cd2001a1d7a0f140c848f22ab9424f19938d2cddc93

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 99a03774ee0cbe4adaff9d519d25da217e0992b47242d6a05bf86cc23af82977
MD5 3b5aea89c3bc693f14f2a9900175071f
BLAKE2b-256 2c450a6af220018d65e36c8655a20a8a6b3ea44c80ca01255430c633592e8624

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 070167bed6acf7b76ebd28806b28a730db24700983819c92ac9f1a75dd92e7cd
MD5 3bfc6f4767b418a6ca8a055cd7aecc07
BLAKE2b-256 03578755ae7a4dd65ad0714225b1e168459226dbc9d0a98cee3af05ac0430af7

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4a4c68a923c82ee66969b1444b8ec017ad3a4e59d4dbe0b7bfe9c9226623e251
MD5 78652f1af8dd8af8e92f86b67e0eb7dc
BLAKE2b-256 2beab958e8bd0d33de6a449985ee57fb8d0f97cfff6c79b5787a8497af5d2cdd

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e63cc1d5eaeefce067355316b04608e11fe718741e94662c70f34d89ba77c685
MD5 b1b2d91c3cc7ddd53ccc1081abf214e6
BLAKE2b-256 81eafe854b4ec5b187e5fe2a1cfa29086d05509439d61efe01e1f6b1fb9806b4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fe6cc653bf4dd22d1dc671073916894529c6e7a1826789d7b8c58dc2289a1527
MD5 852e7bebb7b2c5adc65b21b725a3a006
BLAKE2b-256 9adbe12f8c3e88cfc408f735df7e0ecee177d829fda469fe16c670859a5a4153

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 99236f793cfeb4f62aaad4b99424fb84f772498119283b4adc39dae079abb457
MD5 38c8207ffa7cd79f4e4f4f8e5a0bd9f9
BLAKE2b-256 c8691b802525dec75330685f03458063b123b01c85a25fd044b83696f54ada82

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4aca69071ba6f80f017c500cb896114be6de61920bf759802dac65281cc5f7ca
MD5 ab709d921545dc9abb56c340366f377d
BLAKE2b-256 1eeaba543c1e6742a01a6763d3edd816e88b8f0756e3b550d74eeebb8624373a

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c552fa6c7bc1a4f499f476060b9084e01b7846e7600cd4b7c3ae868cdbf3ac38
MD5 370e310e571b9317746dfc345fdee63a
BLAKE2b-256 deba460ac9b417db898be1ae2362853323d70fbbfbbc9d78019546f3d476aa44

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e074508a1e4bc29a910e4209eb7f026b87465176837ce2e7559cb73e8db8953c
MD5 35ce53196bd0dc75b4c8607e51912314
BLAKE2b-256 74571434d9e44c6afbc792ee5fb97372c6387bf40c0f3bebb6329f5d1a5401c0

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 265f64449be06a1da4b5cbd87ef7210b4266ae75f6b02400caebdadcb414907e
MD5 c0aa59b902acd74b750c6492f46398ee
BLAKE2b-256 dccafc0d586405e6b077547a00d9a8f9f709ce5cb137a6ebaa7463e3e69fea81

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6253cedecf42bd7261ce4434029ce2f5ec6b2742f818a7fd46f4ce1d3850039b
MD5 55e904a07d506ee13e818f911031238a
BLAKE2b-256 15799c0c7a8282a12966bde0ee7b0eab2271124f8c0aceac25d0180061b651c5

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab4511e72b12dc565f82092022bef2097eee1a79c8842d71c49936d20cad34c7
MD5 cc5aebe3e88e8bc1f23594d37aa8b3af
BLAKE2b-256 209fb7f6739bc0e9646b90efb1f48c1926804cd22e7d3be0bf32b1963a709cc9

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 42f3b5f0ec0bfc36533760cc1fc88d3853b21d251aef7ed228980720dbe74ca4
MD5 ebc81c69c0d04cc96045cebac053d45c
BLAKE2b-256 734f26959ac6301ae7bce6033060b3ee26e5087d3c9a93cdfd8d9ce0574d2f18

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3f75a43f54973e84ea4f499b39669b4453a4857dfccb58b96b7a95e85468d61c
MD5 54e0167db968321768cc7c10d92b3432
BLAKE2b-256 b1a22fa5e91e5bde976f5b6b39b3b19ea67b952e2c7fbb16bddd8875a283d5a6

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7af90fb4a477af46fdd1e0becca9c79dafb98b05515135f3a74a8891d3099e31
MD5 558cee09d75f700132cc13d5c9f51659
BLAKE2b-256 ea54c3b10873d606122849c513441ec77e83e3ecd3b20d88582abd334b644633

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c13bca8a83439783626b7d85fb261cd4461265015eaa5769ae8d9a38af0f74c6
MD5 e03d24938f753cf0e2cf569158ff7a90
BLAKE2b-256 d57b45f6e2af70f35df0f15099669b73bdbe0f92048f231694eaff66772f7211

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0c59e85adbff1f2efc45f0a01f2b16ed930e8272a5b0a0542d3e06fb72647ba3
MD5 4458b6531ccbafe140ba03044043538d
BLAKE2b-256 3afebe2c8ff8f6b2e22cbe48144d5fe333d68651652a4e697afeb1f562b50521

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1d7ffa85a7ddd9c87244eb9a581398ddb733a6650681bd97eff20a7c2f419c00
MD5 9fe9db8fa094ca4d54759730886ac61a
BLAKE2b-256 7f56a06b8376bcd7d524b083628f571b8613f7718abf3fe9993fd7afab1b1b42

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cc51cf52b1bc308e76c429aa1ab8a3d96e69e3640eb0a09a6980f2c5c57a3fd8
MD5 869a036b3d220d653e97ab847d0616f4
BLAKE2b-256 6c57bb52835d64bab35cf4807259e2aaca06e568c41068c7bbb5eba8df0212c3

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 130e362409e102b094752c3c376c2d3ae1a7211ec7fc688de7653a37975e69bf
MD5 0705af83e8827d39315bc5ec194133d1
BLAKE2b-256 f6f178166f8413b52d785a209b4fe3a84f7cc5dba54ba90fb0f6692ab6dad9d1

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.2-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nrlmsise00-0.1.2-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 112260bf70ffbe8f39c5fd2c8d29fc6ee787d92806041c41d281e2a13ff1955a
MD5 101f3032b7ed8a9e36e2395e4e95ddeb
BLAKE2b-256 eb4f6d5f16ef864eb87d5df177dceb65f07a1e00afb1cab9ca2f343e86144a3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page