Skip to main content

Non-dominated Sorting Differential Evolution (NSDE) Algorithm

Project description

Non-dominated Sorting Differential Evolution (NSDE)

Build Status Code style: black

The Non-dominated Sorting Differential Evolution (NSDE) algorithm combines the strengths of Differential Evolution [1] with those of the Fast and Elitist Multiobjective Genetic Algorithm NSGA-II [2], following the ideas presented in [3], to provide an efficient and robust method for the global optimization of constrained and unconstrained, single- and multi-objective optimization problems.

Installation

NSDE is available on PyPi, so it can be installed using pip install nsde. It can also be installed using python setup.py install from the root of this repository.

Note that several methods of NSDE are written in C++ to accelerate the code. Therefore, in order to install NSDE from source, a working C++ compiler is required. For Windows, this has only been tested using Visual Studio.

Usage

To solve an optimization problem using NSDE, define a function which takes a single input argument, x, which represents the design vector, and outputs a list of objective values, f, and constraints, g (optional). For example:

def unconstrained(x):
    return [x ** 2, (x - 2) ** 2]

def constrained(x):
    return sum(x * x), 1 - x

The first represents an unconstrained problem with two objectives. The second represents a constrained problem with a single objective.

It is important to note that constraints are expected to be in the form g(x) <= 0. It is the user's responsibility to transform constraints into this form.

Once formulated, problems can be solved using NSDE as follows:

import nsde
opt = nsde.NSDE()
opt.init(constrained, bounds=[(-100, 100)] * 2)
opt.run()
x_opt = opt.best
f_opt = opt.best_fit

For multi-objective problems, it is more useful to look at the pareto front:

opt = nsde.NSDE()
opt.init(constrained, bounds=[(-100, 100)])
opt.run()
pareto = opt.fit[opt.fronts[0]]

When calling .run() on an instance of the NSDE class, the problem is solved until convergence or the maximum number of generations is reached. Alternatively, it is also possible to solve problems one generation at a time by treating the instance of the NSDE class as an iterator:

for generation in opt:
    print("f_opt = ", generation.best_fit)

OpenMDAO

The NSDE algorithm can also be used in OpenMDAO using the NSDEDriver class.

References

  1. Storn, R., and Price, K. "Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces." Journal of Global Optimization, Vol. 11, No. 4, 1997, pp. 341–359. doi:10.1023/a:1008202821328.

  2. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 2002, pp. 182–197. doi:10.1109/4235.996017.

  3. Madavan, N. K. "Multiobjective Optimization Using a Pareto Differential Evolution Approach." Proc. of IEEE Congress on Evolutionary Computation. Vol. 2, 2002, pp. 1145-1150. doi:10.1109/CEC.2002.1004404.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nsde-0.0.5.tar.gz (20.2 kB view details)

Uploaded Source

Built Distribution

nsde-0.0.5-cp37-cp37m-win_amd64.whl (68.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

File details

Details for the file nsde-0.0.5.tar.gz.

File metadata

  • Download URL: nsde-0.0.5.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3

File hashes

Hashes for nsde-0.0.5.tar.gz
Algorithm Hash digest
SHA256 065c692ebc4e658ec1f0a30ed4aec265eb997cb976f8bc8c7ce465bf34661ee4
MD5 2430a7c242163ce7dde1db96e949bd8b
BLAKE2b-256 1c115f224ec4f53858a31052a72ee14bd1ec031b3f0637bb5b33a2daebad7907

See more details on using hashes here.

File details

Details for the file nsde-0.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nsde-0.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 68.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3

File hashes

Hashes for nsde-0.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1fbb6a6e7291eaeb74bf8ded31364f064c693d0cfd2b08f522a36504daf7430e
MD5 d73d3e5bc65500647bbe06b6dd30ca95
BLAKE2b-256 035d768d893b8552b8891f56b67412c72bc7a4abedb4db697f413979729d544f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page