Skip to main content

Transit signals detection among correlated noises

Project description

nuance

Efficient detection of planets transiting quiet or active stars

nuance uses linear models and Gaussian processes (using the JAX-based tinygp) to simultaneously search for planetary transits while modeling correlated noises (e.g. stellar variability) in a tractable way. See the paper for more details.

When to use nuance?

  • To detect single or periodic transits
  • When correlated noises are present in the data (e.g. stellar variability or instrumental systematics)
  • For space-based or sparse ground-based observations
  • To effectively find transits in light curves from multiple instruments
  • To use GPUs for fast transit searches

Documentation at nuance.readthedocs.io

Example

import numpy as np
from nuance import linear_search, periodic_search, core

# linear search
epochs = time.copy()
durations = np.linspace(0.01, 0.2, 15)
ls = linear_search(time, flux, gp=gp)(epochs, durations)

# periodic search
periods = np.linspace(0.3, 5, 2000)
snr_function = jax.jit(core.snr(time, flux, gp=gp))
ps_function = periodic_search(epochs, durations, ls, snr_function)
snr, params = ps_function(periods)

t0, D, P = params[np.argmax(snr)]

Installation

nuance is written for python 3 and can be installed using pip

pip install nuance

or from sources

git clone https://github.com/lgrcia/nuance
cd nuance
pip install -e .

Citation

If you find nuance useful for your research, cite Garcia et. al 2024. The BibTeX entry for the paper is:

@ARTICLE{2024AJ....167..284G,
       author = {{Garcia}, Lionel J. and {Foreman-Mackey}, Daniel and {Murray}, Catriona A. and {Aigrain}, Suzanne and {Feliz}, Dax L. and {Pozuelos}, Francisco J.},
        title = "{nuance: Efficient Detection of Planets Transiting Active Stars}",
      journal = {\aj},
     keywords = {Exoplanet detection methods, Stellar activity, Time series analysis, Gaussian Processes regression, Computational methods, GPU computing, 489, 1580, 1916, 1930, 1965, 1969, Astrophysics - Earth and Planetary Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
         year = 2024,
        month = jun,
       volume = {167},
       number = {6},
          eid = {284},
        pages = {284},
          doi = {10.3847/1538-3881/ad3cd6},
archivePrefix = {arXiv},
       eprint = {2402.06835},
 primaryClass = {astro-ph.EP},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2024AJ....167..284G},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nuance-0.8.0.tar.gz (2.3 MB view details)

Uploaded Source

Built Distribution

nuance-0.8.0-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file nuance-0.8.0.tar.gz.

File metadata

  • Download URL: nuance-0.8.0.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for nuance-0.8.0.tar.gz
Algorithm Hash digest
SHA256 0f3275edaa7b98ed72b762363ec53a342dd96b5f99f426d825e0fc3480f29f29
MD5 40fff3b76399cb9277688210af8658ed
BLAKE2b-256 e3a26d612d0bf8f5c72bb4b7fd940ba96a6b9d9cb9a2f0191ba9620cb7c01c6d

See more details on using hashes here.

File details

Details for the file nuance-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: nuance-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 13.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for nuance-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 da186832ce75a26b0fa294e4f7140afabea2d61f16c80e460967c88208f8ad83
MD5 759739ce14d0e041b576e3334bf19d1e
BLAKE2b-256 85ac14c2d17655c7b4574028adce9c95e19cdc2a253fca2093911f18c6d2219b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page