Skip to main content

Object Detection metrics.

Project description


License: MIT

A python library for Object Detection metrics.

Why OD-Metrics?

  • User-friendly: simple to set and simple to use;
  • Highly Customizable: every parameters that occur in the definition of mAP and mAR can be set by user to custom values;
  • Compatibility with COCOAPI: each calculated metric is tested to coincide with COCOAPI metrics.

Supported Metrics

Supported metrics include mAP (Mean Average Precision), mAR (Mean Average Recall) and IoU (Intersection over Union).

Documentation

For help, usage and API reference, please refer to Documentation

Try live Demo

Try OD-Metrics samples Binder

Installation

Install from PyPI

pip install od-metrics

Install from Github

pip install git+https://github.com/EMalagoli92/OD-Metrics

Simple Example

from od_metrics import ODMetrics

# Ground truths
y_true = [
    { # image 1
     "boxes": [[25, 16, 38, 56], [129, 123, 41, 62]],
     "labels": [0, 1]
     },
    { # image 2
     "boxes": [[123, 11, 43, 55], [38, 132, 59, 45]],
     "labels": [0, 0]
     }
    ]

# Predictions
y_pred = [
    { # image 1
     "boxes": [[25, 27, 37, 54], [119, 111, 40, 67], [124, 9, 49, 67]],
     "labels": [0, 1, 1],
     "scores": [.88, .70, .80]
     },
    { # image 2
     "boxes": [[64, 111, 64, 58], [26, 140, 60, 47], [19, 18, 43, 35]],
     "labels": [0, 1, 0],
     "scores": [.71, .54, .74]
     }
    ]

metrics = ODMetrics()
output = metrics.compute(y_true, y_pred)
print(output)
"""
{'mAP@[.5 | all | 100]': 0.2574257425742574,
 'mAP@[.5:.95 | all | 100]': 0.10297029702970294,
 'mAP@[.5:.95 | large | 100]': -1.0,
 'mAP@[.5:.95 | medium | 100]': 0.10297029702970294,
 'mAP@[.5:.95 | small | 100]': -1.0,
 'mAP@[.75 | all | 100]': 0.0,
 'mAR@[.5 | all | 100]': 0.25,
 'mAR@[.5:.95 | all | 100]': 0.1,
 'mAR@[.5:.95 | all | 10]': 0.1,
 'mAR@[.5:.95 | all | 1]': 0.1,
 'mAR@[.5:.95 | large | 100]': -1.0,
 'mAR@[.5:.95 | medium | 100]': 0.1,
 'mAR@[.5:.95 | small | 100]': -1.0,
 'mAR@[.75 | all | 100]': 0.0,
 'classes': [0, 1],
 'n_images': 2}
"""

Aknowledgment

License

This work is made available under the MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

od_metrics-1.1.0.tar.gz (22.6 kB view details)

Uploaded Source

Built Distribution

od_metrics-1.1.0-py3-none-any.whl (19.3 kB view details)

Uploaded Python 3

File details

Details for the file od_metrics-1.1.0.tar.gz.

File metadata

  • Download URL: od_metrics-1.1.0.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for od_metrics-1.1.0.tar.gz
Algorithm Hash digest
SHA256 3364c0fe4e0ba9029c7c5f1fc6db580d3208bd7c1daa0b71d3c9c2293046c4a5
MD5 90d6357a9b2a2115c2b1d4eb118f5045
BLAKE2b-256 4092580e5f371b7b18b06bc7b4744ab087b88617211194ea628f269affb12ef4

See more details on using hashes here.

File details

Details for the file od_metrics-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: od_metrics-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 19.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for od_metrics-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c3432cd9803c0fcf5d0efa2f26925a023b07b7ed61e3d0f364396e2cae1a7c32
MD5 41d41a82fcc7dbf0d3315d67d018a686
BLAKE2b-256 9325518f4ca6215e8006a67e7eea1b90bd94de195554a50f4768e9d3a08569ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page