Skip to main content

ODC Dataset File Cache

Project description

Dataset Cache

Random access cache of Dataset objects backed by disk storage.

  • Uses lmdb as key value store
    • UUID is the key
    • Compressed json blob is value
  • Uses zstandard compression (with pre-trained dictionaries)
    • Achieves pretty good compression (db size is roughly 3 times larger than .tar.gz of dataset yaml files), but, unlike tar archive, allows random access.
  • Keeps track of Product and Metadata objects
  • Has concept of "groups" (used for GridWorkFlow)

Installation

pip install odc-dscache

Exporting from Datacube

Using command line app

There is a CLI tool called slurpy that can export a set of products to a file

> slurpy --help
Usage: slurpy [OPTIONS] OUTPUT [PRODUCTS]...

Options:
  -E, --env TEXT  Datacube environment name
  -z INTEGER      Compression setting for zstandard 1-fast, 9+ good but slow
  --help          Show this message and exit.

Note that this app is not affected by issue#542, as it implements a properly lazy SQL query using cursors.

From python code

from odc import dscache

# create new file db, deleting old one if exists
cache = dscache.create_cache('sample.db', truncate=True)

# dataset stream from some query
dss = dc.find_datasets_lazy(..)

# tee off dataset stream into db file
dss = cache.tee(dss)

# then just process the stream of datasets
for ds in dss:
   do_stuff_with(ds)

# finally you can call `.close`
cache.close()

Reading from a file database

By default we assume that database file is read-only. If however some other process is writing to the db while this process is reading, you have to supply extra argument to open_ro(.., lock=True). You better not do that over network file system.

from odc import dscache

cache = dscache.open_ro("sample.db")

# access individual dataset: returns None if not found
ds = cache.get("005b0ab7-5454-4eef-829d-ed081135aefb")
if ds is not None:
    do_stuff_with(ds)

# stream all datasets
for ds in cache.get_all():
    do_stuff_with(ds)

For more details see notebook.

Groups

Group is a collection of datasets that are somehow related. It is essentially a simple index: a list of uuids stored under some name. For example we might want to group all datasets that overlap a certain Albers tile into a group with a name albers/{x}_{y}. One can query a list of all group names with .groups() method. One can add new group using .put_group(name, list_of_uuids). To read all datasets that belong to a given group .stream_group(group_name) can be used.

  • Get list of group names and their population counts: .groups() -> List((name, count))
  • Get datasets for a given group: .stream_group(group_name) -> lazy sequence of Dataset objects
  • To get just uuids: .get_group(group_name) -> List[UUID]

There is a cli tool dstiler that can group datasets based on GridSpec

Usage: dstiler [OPTIONS] DBFILE

  Add spatial grouping to file db.

  Default grid is Australian Albers (EPSG:3577) with 100k by 100k tiles. But
  you can also group by Landsat path/row (--native), or Google's map tiling
  regime (--web zoom_level)

Options:
  --native         Use Landsat Path/Row as grouping
  --native-albers  When datasets are in Albers grid already
  --web INTEGER    Use web map tiling regime at supplied zoom level
  --help           Show this message and exit.

Note that unlike tools like datacube-stats --save-tasks that rely on GridWorkflow.group_into_cells, dstiler is capable of processing large datasets since it does not keep the entire Dataset object in memory for every dataset observed, instead only UUID is kept in RAM until completion, drastically reducing RAM usage. There is also an optimization for ingested products, these are already tiled into Albers tiles so rather than doing relatively expensive geometry overlap checks we can simply extract Albers tile index directly from Dataset's .metadata.grid_spatial property. To use this option supply --native-albers to dstiler app.

Notes on performance

It took 26 minutes to slurp 2,627,779 wofs datasets from a local postgres server on AWS(r4.xlarge), this generated 1.4G database file.

Command being timed: "slurpy -E wofs wofs.db :all:"
User time (seconds): 1037.93
System time (seconds): 48.77
Percent of CPU this job got: 69%
Elapsed (wall clock) time (h:mm:ss or m:ss): 26:04.79

Adding Albers tile grouping to this took just over 4 minutes, that's a processing rate of ~10.6K datasets per second.

Command being timed: "dstiler --native-albers wofs.db"
User time (seconds): 234.57
System time (seconds): 2.65
Percent of CPU this job got: 95%
Elapsed (wall clock) time (h:mm:ss or m:ss): 4:08.70

Similar work load but on VDI node (2,747,870 wofs dataset from main db) took 23 minutes to dump all datasets from DB and 7 minutes to tile into Albers grid using "native grid" optimization. Read throughput from file db on VDI node is slower than on AWS, but is still a respectable 6.5K datasets per second. Database file was somewhat bigger too, 2G vs 1.4G on AWS, maybe there is a significant difference in zstandard library between two systems.

Command being timed: "slurpy wofs.db wofs_albers"
User time (seconds): 1077.74
System time (seconds): 49.75
Percent of CPU this job got: 81%
Elapsed (wall clock) time (h:mm:ss or m:ss): 23:01.20
Command being timed: "dstiler --native-albers wofs.db"
User time (seconds): 408.65
System time (seconds): 6.28
Percent of CPU this job got: 98%
Elapsed (wall clock) time (h:mm:ss or m:ss): 7:03.22

I'd like to point out that grouping datasets into Grids can very well happen during slurpy process without adding much overhead, so two step processing is not strictly necessary.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

odc-dscache-0.2.0a4.tar.gz (29.6 kB view details)

Uploaded Source

Built Distribution

odc_dscache-0.2.0a4-py3-none-any.whl (32.7 kB view details)

Uploaded Python 3

File details

Details for the file odc-dscache-0.2.0a4.tar.gz.

File metadata

  • Download URL: odc-dscache-0.2.0a4.tar.gz
  • Upload date:
  • Size: 29.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for odc-dscache-0.2.0a4.tar.gz
Algorithm Hash digest
SHA256 06025b1d37c03d8234bb4e54ce75e4fae37068f5da81505f261bf86b485ace6d
MD5 a95af74cc7d95dde91646cfa3611f827
BLAKE2b-256 392e67ff9af457e7d08cdb4b80f01060c60a2419f3714741232f8b63fc6dcb2d

See more details on using hashes here.

File details

Details for the file odc_dscache-0.2.0a4-py3-none-any.whl.

File metadata

  • Download URL: odc_dscache-0.2.0a4-py3-none-any.whl
  • Upload date:
  • Size: 32.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for odc_dscache-0.2.0a4-py3-none-any.whl
Algorithm Hash digest
SHA256 75bc16ec960a209d93e958ef21140e42e9a1dc88774ff94e197ea2b207231d6b
MD5 4e57516f4f41f6ec835c2bfea4658b39
BLAKE2b-256 54714babb475c67c726b6a3b7a7fe4bca29d38d33e2318782880e70dc8fe781d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page