Skip to main content

Open Graph Benchmark

Project description


PyPI License

Overview

The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover a variety of graph machine learning tasks and real-world applications. The OGB data loaders are fully compatible with popular graph deep learning frameworks, including PyTorch Geometric and Deep Graph Library (DGL). They provide automatic dataset downloading, standardized dataset splits, and unified performance evaluation.

OGB aims to provide graph datasets that cover important graph machine learning tasks, diverse dataset scale, and rich domains.

Graph ML Tasks: We cover three fundamental graph machine learning tasks: prediction at the level of nodes, links, and graphs.

Diverse scale: Small-scale graph datasets can be processed within a single GPU, while medium- and large-scale graphs might require multiple GPUs or clever sampling/partition techniques.

Rich domains: Graph datasets come from diverse domains ranging from scientific ones to social/information networks, and also include heterogeneous knowledge graphs.

OGB is an on-going effort, and we are planning to increase our coverage in the future.

Installation

You can install OGB using Python's package manager pip.

Important: The details of OGB are subject to change until the version 1.0.0 is released. We plan to release it by the end of March 2020. Thanks for your patience.

Requirements

  • Python>=3.5
  • PyTorch>=1.2
  • DGL>=0.4.1 or torch-geometric>=1.3.1
  • Numpy>=1.16.0
  • pandas>=0.24.0
  • urllib3>=1.24.0
  • scikit-learn>=0.20.0

Pip install

The recommended way to install OGB is using Python's package manager pip:

pip install ogb

From source

You can also install OGB from source. This is recommended if you want to contribute to OGB.

git clone https://github.com/snap-stanford/ogb
cd ogb
python setup.py install

Example

We highlight two key features of OGB, namely, (1) easy-to-use data loaders, and (2) standardized evaluators.

(1) Data loaders

We prepare easy-to-use PyTorch Geometric and DGL data loaders. We handle dataset downloading as well as standardized dataset splitting. Below, on PyTorch Geometric, we see that a few lines of code is sufficient to prepare and split the dataset! Needless to say, you can enjoy the same convenience for DGL!

from ogb.graphproppred.dataset_pyg import PygGraphPropPredDataset
from torch_geometric.data import DataLoader

dataset = PygGraphPropPredDataset(name = "ogbg-mol-hiv")

splitted_idx = dataset.get_idx_split() 
train_loader = DataLoader(dataset[splitted_idx["train"]], batch_size=32, shuffle=True)
valid_loader = DataLoader(dataset[splitted_idx["valid"]], batch_size=32, shuffle=False)
test_loader = DataLoader(dataset[splitted_idx["test"]], batch_size=32, shuffle=False)

(2) Evaluators

We also prepare standardized evaluators for easy evaluation and comparison of different methods. The evaluator takes input_dict (a dictionary whose format is specified in evaluator.expected_input_format) as input, and returns a dictionary storing the performance metric appropriate for the given dataset. The standardized evaluation protocol allows researchers to reliably compare their methods.

from ogb.graphproppred import Evaluator

evaluator = Evaluator(name = "ogbg-mol-hiv")
# You can learn the input and output format specification of the evaluator as follows.
# print(evaluator.expected_input_format) 
# print(evaluator.expected_output_format) 
input_dict = {"y_true": y_true, "y_pred": y_pred}
result_dict = evaluator.eval(input_dict) # E.g., {"rocauc": 0.7321}

Citing OGB

Coming soon.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ogb-1.0.0.tar.gz (20.0 kB view details)

Uploaded Source

Built Distribution

ogb-1.0.0-py3-none-any.whl (34.6 kB view details)

Uploaded Python 3

File details

Details for the file ogb-1.0.0.tar.gz.

File metadata

  • Download URL: ogb-1.0.0.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.3

File hashes

Hashes for ogb-1.0.0.tar.gz
Algorithm Hash digest
SHA256 6796f14ddf729f2dd772f470420294849f0064e13a3cb68552f3e957ef6d19b1
MD5 767610e4278c995c42d765b2e8b70057
BLAKE2b-256 92cb0e713a45a7f0635ed98066629b4117247cad09af89320ae029ce293f9ae1

See more details on using hashes here.

File details

Details for the file ogb-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: ogb-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 34.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.3

File hashes

Hashes for ogb-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bb70b7b28206d6791968493051c9b3c5f4972d34cc1463b8afb3d13bfd741788
MD5 879042398c85b7908e4b6d31b67e0192
BLAKE2b-256 9e24af060a35d581f1bf4d8b6a6be028e52647803b761177aeef5f1b66672a25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page