Skip to main content

Open Mathematical prograMming eXchange (OMMX)

Project description

OMMX

Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.

Design

OMMX introduces two specification to solve the problem of data exchange in optimization field:

  • Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
  • OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.

Tutorial

Notebook Open in Colab
OMMX Message Open In Colab
OMMX Artifact Open In Colab
Cookbook Open In Colab

To run the notebooks locally, you need to install required packages listed in requirements.txt

# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate

# Install required packages (including Jupyter)
pip install -r requirements.txt

# Start Jupyter
jupyter lab

API Reference

See DEVELOPMENT.md about developing this project.

Rust SDK

Crate name crates.io API Reference (stable) API Reference (main)
ommx ommx docs.rs main

Python SDK

Package name PyPI API Reference (main)
ommx ommx main
ommx-python-mip-adapter ommx-python-mip-adapter main

License

© 2024 Jij Inc.

This project is licensed under either of

at your option.

Contribution

TBW

Acknowledgement

BRIDGE This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ommx-1.0.0-cp311-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

ommx-1.0.0-cp311-cp311-manylinux_2_28_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

ommx-1.0.0-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ommx-1.0.0-cp310-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

ommx-1.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

ommx-1.0.0-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ommx-1.0.0-cp39-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

ommx-1.0.0-cp39-cp39-manylinux_2_28_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

ommx-1.0.0-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ommx-1.0.0-cp38-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

ommx-1.0.0-cp38-cp38-manylinux_2_28_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

ommx-1.0.0-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ommx-1.0.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.0.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.0.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f682df934decd36f4ccd99e4b722c5f128d18b6e7bb0230a25f5971ae13a5485
MD5 878ff42237fa68ffbdffc00fb8903e31
BLAKE2b-256 77d8b3a1f462ca373054340bc738737359f6ef18586923b791cda5dabd3ec2bf

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.0.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 39c783a7cac777fff706e7689c1c07cfddfc03b3f776f15f271861c607fb28ba
MD5 f4e6ccd4b47ba79008d1c7411bc4d65e
BLAKE2b-256 23ddd5af2ec918f4e72524adcade86ef6a96da5fe000dc5018bdce93d9333fbe

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a05e2965f545e6e3765ae25614da743fa59a396e5c302db3e900bd3ab9591513
MD5 644f9222c5e0b6cdfdb2d461ab65ed08
BLAKE2b-256 b69bdafc4e5790cc4ef85122e97d978afe22b279ceb6107456c0f7f265b51415

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.0.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.0.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 27cafc283b826ad2002807705149eac0435b323a92137f12294dfec0a026a3e7
MD5 81cd41e626cc5c3512f2e0c444b42dbb
BLAKE2b-256 bd470202e841fe8fdad37f3f665fb556722a14dde3f23598826b973d0c7f817d

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.0.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 38696eb68584c95d1c1b877404e53c79a4bc9a53d102786b04445d6e861c7b17
MD5 84f71eac7d42484c2507c5ec8ae1a381
BLAKE2b-256 2eacd24c699fff535418c824888f5e2a2b3cf97cc8060026612f0f987229b737

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d518b3b22ab21a7ef1febb0a9840e610df059ee6eda3d14a2267d9076b6de5f
MD5 5940cb3f98e289ce77a3285fb899bd1c
BLAKE2b-256 590b10a4ef5acf5ad8c8bd7797324cd78616cde07ec86872b4f929e25122b60f

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.0.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.0.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 e35479dde5704c45cf5231cad56b3ee8e0711e4b81e1d34f0c99c711c99af9bb
MD5 16bd88ca7897cb82130ee3c2946775ea
BLAKE2b-256 556010f17f18cfc1515701ac5f9661096c6ca740caa0dd0a77ea5d9f996ce745

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.0.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b9a2571ca546c48c4e386332d030bb6f9f17b5ff7fa8b3c570d6f9b56a83be93
MD5 11e06f4e9c4f9496bb78aaafaed6c153
BLAKE2b-256 b6d0b165bad188d2d1bc33ad62e287d7760063a7f5457d4e32a7751e4ea53a2d

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b7f7eefaff372237e457940d9afc6036e65d0aad805904fe1055d17bcd423d5
MD5 ddec10a7e8d94a13f06b85e6acd92291
BLAKE2b-256 94deb039f2f98f0017e6a3b1be050424c84fb182e76c6f4eb36028def999ae0b

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.0.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.0.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 64d12db1b34cf6793ac734437b95f01b25c0841121ab5e615254257ba61b4c84
MD5 d30a23cd900a7982b24cb705b64f1f4b
BLAKE2b-256 1fb9e2456a493b297b49f5971bf9fa0571e337c5a8023374cd84941edd539168

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.0.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 79fb0d839a79021b88854e4837c7fc1dd789e1588d9aaee1ac8f7e6f348dc1ac
MD5 44c3a33459fbcb602e1a485df8f2b035
BLAKE2b-256 615b547b1cabd73229893afb37c437cb51e7e47521ef768b26d711ea5beae111

See more details on using hashes here.

File details

Details for the file ommx-1.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 87fabe059b9734e58ee0e6b91616207c6d0ece5ad2fa7c819d29c81bb911a62d
MD5 d76b3b1b3dedb76491b8e084d4b656b0
BLAKE2b-256 3f805f4cbb0f595e24c1c1e8b71f5f70fe13b109afcaaef9e44a075e89969c2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page