Skip to main content

Open Mathematical prograMming eXchange (OMMX)

Project description

OMMX

Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.

Design

OMMX introduces two specification to solve the problem of data exchange in optimization field:

  • Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
  • OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.

Tutorial

Notebook Open in Binder Open in Colab
OMMX Message Binder Open In Colab
OMMX Artifact Binder Open In Colab
Cookbook Binder Open In Colab

To run the notebooks locally, you need to install required packages listed in requirements.txt

# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate

# Install required packages (including Jupyter)
pip install -r requirements.txt

# Start Jupyter
jupyter lab

API Reference

See DEVELOPMENT.md about developing this project.

Rust SDK

Crate name crates.io API Reference (stable) API Reference (main)
ommx ommx docs.rs main

Python SDK

Package name PyPI API Reference (main)
ommx ommx main
ommx-python-mip-adapter ommx-python-mip-adapter main

License

© 2024 Jij Inc.

This project is licensed under either of

at your option.

Contribution

TBW

Acknowledgement

BRIDGE This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ommx-1.0.1-cp311-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

ommx-1.0.1-cp311-cp311-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

ommx-1.0.1-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ommx-1.0.1-cp310-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

ommx-1.0.1-cp310-cp310-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

ommx-1.0.1-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ommx-1.0.1-cp39-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

ommx-1.0.1-cp39-cp39-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

ommx-1.0.1-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ommx-1.0.1-cp38-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

ommx-1.0.1-cp38-cp38-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

ommx-1.0.1-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ommx-1.0.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.0.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.0.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 fbcfebdb00f7191a0a20253a29e7c2539f69f07df2e8f48cdc075e90f1cfba21
MD5 53dc20367423aa9f03abb18204e23e04
BLAKE2b-256 dffce4a9cc400f4b709d9597eaeb6119a59891c91a8da7d109a934db5c0f99d7

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.0.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c353fe321f846ebd17b32fce8d5530db189dbd51add5f2de16956e9d16f4c98b
MD5 33519fe26981846243a1afddfb988df2
BLAKE2b-256 fa58ce2a8641f46f17463279ac1b49f4cc273b1fe452063d214bda0075d283fe

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9963af5467bd4a487271c27d1e81eea0d89dccbc3658f7130a890b09b3594d46
MD5 2dde3517930c4afe2d78271d9c93a982
BLAKE2b-256 54850c8887ae567dcf2c83486559367b04df57bf7bc9f53150e5f28c0397ad31

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.0.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.0.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 6d142b15508362449468832446dac9b552842d3073647bc041b81287ad647c71
MD5 079dd00d418354ca0cf1bba5d5e8f990
BLAKE2b-256 6e5bd179556d39331d35fe9796d7263e641787426c0b3641f99f468446e62ef5

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.0.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 97b97fe278d1b5757672203c3b19d68e2dcc1810c491dbfec41a97ca07adbf00
MD5 469aebae8f24ae0b0ae53e12dff437b5
BLAKE2b-256 558da926c4fffada4e67e6d25f7be00775e037bca34657f8e3148f23a87d6758

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 524bff5b676c957f2cab515994c74dbc8428ccb6aa25f72dd81183be91995f1d
MD5 bba23b860355c3498fec2ecc70b1ba45
BLAKE2b-256 ffa606f76d3f628cfbacca730fa7d984ebd27211c869ebef22f2eb44defeca04

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.0.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.0.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 bdcf7367ba377a22cbff44f752aba45e4479f744626742c4d408077afd6969bc
MD5 a86e8e7a2757ee6fc0d80aebab733005
BLAKE2b-256 003b73839dfafdff01ed18c78ed38da98b35bb82206d57c9f7efac9499e0919b

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.0.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f79644efb8333d3efd439b8a2de0e1840f61f096f027f20fb9b010cf3409751a
MD5 8fbe977dafc3d7ba8289383fc33c5756
BLAKE2b-256 804239a7909b14f0f2a7768662ff92f5c4888ab2f77a7addbe75c92e99295b53

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8b4ad5836c73c19ea503e451d1b3273df77ae744a18fbff190ecd5e4d635942e
MD5 02418f997381f5fd4240a7bec3566ead
BLAKE2b-256 a9ebf3c103199ddcc308f4da31ca5fd774f26507787e9f0bd1fba8b601ee7ac2

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.0.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.0.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 28c786de116ce0c191e5f6a3837eb77e8cfb51befd0f93212584bade82818e49
MD5 2cd5940b49f6bcff3b11e1094018fdff
BLAKE2b-256 bf5862aaae4d19b5c4730749bd7f96e7e99daec0a96080e6526edb4b72193070

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.0.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6db9cb3787f6c92aa64dd6737bfde951a65c2470f8b0ee7c787cf39e5c711198
MD5 745715e46d2a15ec5e482a414463f0c8
BLAKE2b-256 3b6b90279ae1aa7367e4ffe363a545b6d7527a3c8c102ecc8a659e44d0164a4f

See more details on using hashes here.

File details

Details for the file ommx-1.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea599de2c5e31a1adcd0ffabb75340bcce2285fd855d270d5a0a49e93a7ec779
MD5 afff728f8c431c4071ae3ed87d93b5fb
BLAKE2b-256 151272d8f7eabb33bc52e21cee8627d5fea613d362e8f46c8ae50fd34147bbd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page