Skip to main content

Open Mathematical prograMming eXchange (OMMX)

Project description

OMMX

Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.

Design

OMMX introduces two specification to solve the problem of data exchange in optimization field:

  • Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
  • OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.

Tutorial

Notebook Open in Binder Open in Colab
OMMX Message Binder Open In Colab
OMMX Artifact Binder Open In Colab
Cookbook Binder Open In Colab

To run the notebooks locally, you need to install required packages listed in requirements.txt

# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate

# Install required packages (including Jupyter)
pip install -r requirements.txt

# Start Jupyter
jupyter lab

API Reference

See DEVELOPMENT.md about developing this project.

Rust SDK

Crate name crates.io API Reference (stable) API Reference (main)
ommx ommx docs.rs main

Python SDK

Package name PyPI API Reference (main)
ommx ommx main
ommx-python-mip-adapter ommx-python-mip-adapter main

License

© 2024 Jij Inc.

This project is licensed under either of

at your option.

Contribution

TBW

Acknowledgement

BRIDGE This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ommx-1.1.0-cp311-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

ommx-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

ommx-1.1.0-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ommx-1.1.0-cp310-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

ommx-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

ommx-1.1.0-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ommx-1.1.0-cp39-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

ommx-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

ommx-1.1.0-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ommx-1.1.0-cp38-none-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

ommx-1.1.0-cp38-cp38-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

ommx-1.1.0-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ommx-1.1.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.1.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.1.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 4b39a6f01e78c52e58d7a1e770a9fb71f4f0a723f3edf377ed9615dbc3fc3ec5
MD5 0e863b4acd9918cd825a2d3f6906b55f
BLAKE2b-256 08e9ee7b25ad2146d2f95d3771bf98c5949e370f1af1b7b69285fb3bfb4400f3

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 14c96da3e1ad69ba38df3b0e84c58127e97a4d8d2c4b359d41ee2471756186aa
MD5 2a9c677a9ffa0506d50d164d323e3e60
BLAKE2b-256 2039249b02b31a1d143986e8ffda637c1d996b95bc31ef9a5933879a5b8749ba

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0a4164b98ac4aee534886a0dc397ac035a73c24acde443b85d61fe573b91069
MD5 876017c8b0f9825579c062ff75e05aee
BLAKE2b-256 6aee55c58adc488296d1e4dee3dfe5ecbe7680043b10104872d8379027fa8d7b

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.1.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.1.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 bdafb8e283ff07ba069d679f062de47c67798fcd3a8e73f69d0de6a19fb07dd8
MD5 e8f9d5d8d67db40c288ff60fee589429
BLAKE2b-256 a08dfaf37c04b72cd58954fdfab7e61f2c42edbd209db2a9fcbcf3d43b56c808

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 642ffb13b2c40a7de53861456ef3320e98d9c029659eb7ebc1ebcf9e4557afd0
MD5 a10ad1e23efac10d99e87802beee4853
BLAKE2b-256 ac7b8f0f89908325be49dd6822dda014e37555dc1be7d1203715926b6739912d

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91b38a94c3f78f8dcbf3dbbda95c85afc91dffbaee1da399c1e887d9343ab3aa
MD5 92e93bba9c2fb10db036aa8a6cee0882
BLAKE2b-256 30aae60d6ccdb3e4b34061885e908e2501417b6ca85987a69511fce667510e0e

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.1.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.1.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 1b7af767a9694e60d40559d7645a0d4081ecb31c483c893493c64ebb5f2cb4c0
MD5 747ca2a355a4a3b4410ddaa92cf6eba4
BLAKE2b-256 cd987a2d571cbfe32bd772c44ba026653cfbaa055b730ccce8ff8ca9cb58d517

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 316764bd86889ff637cdaa2eb7f152730df42de0ae1aa02fb7fa97f15c07b90c
MD5 023fe9e27a32c231a5f2df9295de57c5
BLAKE2b-256 79d2dd72d4b176fedf29ade993eadb829f5b5d7efb79c4f77bc675be86e826ad

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b90bdf562645c5fa94d540af1bdb7730cffbf302586f5cd2de32ae6d4afb128
MD5 e6316a456cf361dfcb9477d352477084
BLAKE2b-256 a935bb5abb72b5af9d1dca27b8f690063612f5d89e0c4a6c6d3cea5309374d8d

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.1.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ommx-1.1.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 d86dd7c3514da29cf7bef8b39dbedaf85d7af98c3c6560ded35497b1640cb7f4
MD5 64b8dfa36329f964999e6c02293c1470
BLAKE2b-256 fb5c8b343f0838b4a08982277181f12b06451e71f67a187b167cb8a3971a4f7f

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.1.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 741d3b83ec294bdd6537f391b53d5ab2f81952d44bd7bdc81d5dd541c910feb9
MD5 8170d5f3b67df1ae0d35cb6166114785
BLAKE2b-256 9998823b60ca2e87c97f8dbc0d5f4003032a8868c6207c5f7750bfb2efee6623

See more details on using hashes here.

File details

Details for the file ommx-1.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5b1b6202b04614fc22312113640edd047c06e4a62260ee1297bcef38ea9b8e6
MD5 a911a75257ac4fe174fc8ee51a42e834
BLAKE2b-256 900543dedea8251a3484c58523c90992d6fbd702d1b9bece115b7001c82d5ec0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page