Skip to main content

Open Mathematical prograMming eXchange (OMMX)

Project description

OMMX

Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.

Design

OMMX introduces two specification to solve the problem of data exchange in optimization field:

  • Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
  • OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.

Tutorial

Notebook Open in Binder Open in Colab
OMMX Message Binder Open In Colab
OMMX Artifact Binder Open In Colab
Cookbook Binder Open In Colab
Create OMMX Adapters Binder Open In Colab

To run the notebooks locally, you need to install required packages listed in requirements.txt

# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate

# Install required packages (including Jupyter)
pip install -r requirements.txt

# Start Jupyter
jupyter lab

API Reference

See DEVELOPMENT.md about developing this project.

Rust SDK

Crate name crates.io API Reference (stable) API Reference (main)
ommx ommx docs.rs main

Python SDK

Package name PyPI API Reference (main)
ommx ommx main
ommx-python-mip-adapter ommx-python-mip-adapter main

License

© 2024 Jij Inc.

This project is licensed under either of

at your option.

Contribution

TBW

Acknowledgement

BRIDGE This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ommx-1.1.1-cp311-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

ommx-1.1.1-cp311-cp311-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

ommx-1.1.1-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ommx-1.1.1-cp310-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

ommx-1.1.1-cp310-cp310-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

ommx-1.1.1-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ommx-1.1.1-cp39-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

ommx-1.1.1-cp39-cp39-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

ommx-1.1.1-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ommx-1.1.1-cp38-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

ommx-1.1.1-cp38-cp38-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

ommx-1.1.1-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ommx-1.1.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.1.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ommx-1.1.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 becbcc13ef111e25a90d211adabce858feb2b1388ce6cd9db9c736e220ad30f4
MD5 352c32d4ebb3fa1b1f8b31fc2a1254a4
BLAKE2b-256 1a9d640b75aba60ad0ad59c247b4bcf89f6372f6211d57bec5ef29d7e93d9cf5

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.1.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bda28f2d62306c49760e04ada5a17470b383f4ea0e394a5c44f2f4de88bf5e4c
MD5 b425db36fe17c698a5049926973f88be
BLAKE2b-256 2f63d7fb64f4dcdc03560a4bbdff260dbfcf301c8000ae24af5854a3fddb5593

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9cc3ccc0c4f5cac254553b31969b0fbb66504b46b117bbdedbfb99eba21cf243
MD5 c7f3cab4203ee64654aab7fdde3f8991
BLAKE2b-256 9d0c19e8ef2ce2f4cfc661a893ec3766e47358c58987bb6437ebd14a7c8ce5d5

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.1.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ommx-1.1.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 95315abef63be8d238c05afb8e0a9ebbdb31b95ea3e9dbcc8e514d15e3772b19
MD5 19493ad486399a402ef33c96dc7e0d42
BLAKE2b-256 ca48c1edaa8158498a1daec46935ea634a343bdfc5cbaa2280b4358a47e4963e

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.1.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b01b37a524be15b74b11bb90606b7843c4d09b12c8b9ff1ba2a720e146e098ad
MD5 286e328bb452fc4082ea13d3c61100e1
BLAKE2b-256 ed9de5af5f5f7d78d32beb1f4bcc2849aec082dcc6296d1437983b5c77ee8517

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 20dda611c7d057e0af63c6c0a5d8b8c2111481ced310e483eb5d75c0e2739185
MD5 e496e5e94656d9b5d477e64d25e12623
BLAKE2b-256 a1b098340120fa3933fb253a50cbdacd75e9b4f52f5967b0b20d42b04f4f941e

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.1.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ommx-1.1.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 0ffa86d366aadf7ac1150d00f706d51d3fd9315f721eef516335ae0528b0b197
MD5 77f736fac4f2bbbce41a916662194430
BLAKE2b-256 484f8b2969031c5a2bacabf98ab8bb6dcac1f93bbe2c6a4fdcc52b6250ed700b

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.1.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 efae133de039f505b21ee236845b64a76425d3c993eabcd5ae2876448905135a
MD5 a2a4f87cdf326ae25363cc4dff59cdde
BLAKE2b-256 a7269d9b830d7b2a8329630eab20a318569ed54b44407a8ea6938c9154ab1e08

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58b3cfa1150cf49a59e83151e4fda071dc32be905de6412e86b97ff504844d95
MD5 ed28c98a0afd3857af19e5cf5cd9b8e9
BLAKE2b-256 f24853b3b9bb7c40e511017026a7474ed4dfb998be64815ca6c4c8f22ba3cf90

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.1.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ommx-1.1.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 9476c6c7f8fbee091807bc99c5597728cec8e2eba1a4fab93a9dbe765b230e45
MD5 6d51163cc6b8eff6c11fcfe8b7dc97b8
BLAKE2b-256 b2618e4d6ccfc85c34a0ec33d254e1ec22d486f4dd1c805b1853222b52cda100

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.1.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d2bc570bff467e8f762fa9db5c737a298d31b4a919b0b8363b29c9f617721c3b
MD5 86b569b783ea0da88b159e13bfcfd20e
BLAKE2b-256 15c85eedf1ec9e364ec1547be550ba99cd01d81d5f33a0eb070ff15ce9673d6d

See more details on using hashes here.

File details

Details for the file ommx-1.1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa4e83cc5e56f20a62e274944c93d60f5f316532f2bc9a7bbb2842a8157ad29a
MD5 3bca53be9472a222dd0047ac6c418922
BLAKE2b-256 d1f7d6cb8606b17b443019acadf1e7d239f66885fd9c2379f7aca8b7a4074685

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page