Skip to main content

Open Mathematical prograMming eXchange (OMMX)

Project description

OMMX

main main

Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.

Design

OMMX introduces two specification to solve the problem of data exchange in optimization field:

  • Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
  • OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.

Tutorial

Notebook Open in Binder Open in Colab
OMMX Message Binder Open In Colab
OMMX Artifact Binder Open In Colab
Cookbook Binder Open In Colab
Create OMMX Adapters Binder Open In Colab

To run the notebooks locally, you need to install required packages listed in requirements.txt

# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate

# Install required packages (including Jupyter)
pip install -r requirements.txt

# Start Jupyter
jupyter lab

API Reference

See DEVELOPMENT.md about developing this project.

Rust SDK

Crate name crates.io API Reference (stable) API Reference (main)
ommx ommx docs.rs main

Python SDK

Package name PyPI API Reference (main)
ommx ommx main
ommx-python-mip-adapter ommx-python-mip-adapter main

License

© 2024 Jij Inc.

This project is licensed under either of

at your option.

Contribution

TBW

Acknowledgement

BRIDGE This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ommx-1.2.0-cp311-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

ommx-1.2.0-cp311-cp311-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

ommx-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ommx-1.2.0-cp310-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

ommx-1.2.0-cp310-cp310-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

ommx-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ommx-1.2.0-cp39-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

ommx-1.2.0-cp39-cp39-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

ommx-1.2.0-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ommx-1.2.0-cp38-none-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

ommx-1.2.0-cp38-cp38-manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

ommx-1.2.0-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ommx-1.2.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.2.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.2.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 bc73ef4189bb796092c107fc0901eaff8dddaf873cf38b5c5709f5c68d9b1cc8
MD5 44bdd81ddca987df0c2209e87d8c2e93
BLAKE2b-256 110b1cf2619e1f354d65fd679faa703033c4d0a636132d1abf885aca6ad4fa23

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.2.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4521a91b3bb31fa3e7d4dd903f5908f1ae48bbaa9e1ebff730b5192d408e64fe
MD5 d3e27991490e56c2afcc52484a9ab139
BLAKE2b-256 7852c44b81b7d80cb29f80abec4375d54accc0f4a4aa23a433fa0de94fd41d0a

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e465e223bb27cf2549a62e318798db35ddef078cee3c4764ab3ef3ed2dbabe5
MD5 872b8e644dbe7d6ac705920d111b1f06
BLAKE2b-256 391bfea585cb2a78674eb9f612b982cac12f38194b684a839d9247e2f4775a97

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.2.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.2.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 e9486e67ce7f35506ad4ebe5aeea3ceb11d3cbc1447bcf65d79bca43b11ad806
MD5 0f786f5b175d5f06d09a1f135bb728b8
BLAKE2b-256 c32d2e69fe42e943268e346453c9f52da1f919035d82a6b2c275331105c5ef71

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.2.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a42230a819452e3d792c98c55d0fd665de6941f8334b046a054a7bb361f64951
MD5 fd3d3afeb7dc8b98c44c065f07cbd5e9
BLAKE2b-256 6d14c2074eee01e6a138bea206b55581044e0f5945ca691045f8a5c44b286cf1

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23da3c97efbe1f397250915f3da582300147984e285515199a31da5888f1fca7
MD5 acd1a67b3b4881a7a74ea73cb9c3ef09
BLAKE2b-256 7b1d1d67801ede45a632c9a765b2e63da98b368f1ee6bcd809ea5b28be063448

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.2.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.2.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 a6c76afcd55176fafa7c5eaabb9412febb0ad23ddd4839340961d0d093c43ca4
MD5 e8b4164d98ef14bb8cbd1928b44d928c
BLAKE2b-256 9498ee9f1a24b1456aeaa99862871f043429402e4313814cc0cc5fc0a0f47828

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.2.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 eb336f717b0a509e6412fa31db266edb22af0f36a7a91a724f02948b984c433d
MD5 59d1c44219fd5b785bf1b99d4625c551
BLAKE2b-256 c1a53a80267ba01e8632cb321f24255ef3d09161462657457538317f47a4fa93

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34137f8ef5c02d4b96894cbba5204944684adb1fedf92320e3d212eaa7a2f19f
MD5 dadc1933371a9c67e07b8ce0671d9ebf
BLAKE2b-256 70d2132796050d434e2aeaeee3d8b1011b5ea3dc3633bf9ab5bc48aada6521a6

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.2.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.2.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 ec7adabf2c9919f549d3f71af7c2c306dd36151504da601f54f84afd2668cee8
MD5 3d45ffd70a501dd167d59044d7dc9f5b
BLAKE2b-256 9bb9f0b2477643ca3d631eb39ad0b9f072c62bf0c3423c380805ac94aead1b6b

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.2.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8cc769333e104b1ea9c2ec3c5c6ec8ec5f678b51ade4009b795ae519b990a754
MD5 6fe559f56e78512de5199b89634d9684
BLAKE2b-256 46aa362228c05930ca07f6d270b9c76bbfb7e72fe880f0c56f1032ec3221afad

See more details on using hashes here.

File details

Details for the file ommx-1.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a8de8ae89b5ab7dc166e3ce37522b27eb79641bfd7c5313261920bd6cd942e7
MD5 11e31291cde23d3f766c99cba7e7dff5
BLAKE2b-256 a19fe359d8ca53cc2dcd7d90d73d625c58329f01e0313abd5c3262586eeb4012

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page