Skip to main content

Open Mathematical prograMming eXchange (OMMX)

Project description

OMMX

main main

Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.

Design

OMMX introduces two specification to solve the problem of data exchange in optimization field:

  • Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
  • OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.

Tutorial

Notebook Open in Binder Open in Colab
OMMX Message Binder Open In Colab
OMMX Artifact Binder Open In Colab
Cookbook Binder Open In Colab
Create OMMX Adapters Binder Open In Colab

To run the notebooks locally, you need to install required packages listed in requirements.txt

# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate

# Install required packages (including Jupyter)
pip install -r requirements.txt

# Start Jupyter
jupyter lab

API Reference

See DEVELOPMENT.md about developing this project.

Rust SDK

Crate name crates.io API Reference (stable) API Reference (main)
ommx ommx docs.rs main

Python SDK

Package name PyPI API Reference (main)
ommx ommx main
ommx-python-mip-adapter ommx-python-mip-adapter main

License

© 2024 Jij Inc.

This project is licensed under either of

at your option.

Contribution

TBW

Acknowledgement

BRIDGE This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ommx-1.3.0-cp312-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

ommx-1.3.0-cp312-cp312-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

ommx-1.3.0-cp312-cp312-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ommx-1.3.0-cp311-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

ommx-1.3.0-cp311-cp311-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

ommx-1.3.0-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ommx-1.3.0-cp310-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

ommx-1.3.0-cp310-cp310-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

ommx-1.3.0-cp310-cp310-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ommx-1.3.0-cp39-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

ommx-1.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

ommx-1.3.0-cp39-cp39-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ommx-1.3.0-cp38-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

ommx-1.3.0-cp38-cp38-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

ommx-1.3.0-cp38-cp38-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ommx-1.3.0-cp312-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.0-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 b0b7d60dbff857640774c5413ddc1e1a8910b5478bfeaca87e27cc7997e76476
MD5 c2f671fd6e4d81eac9aa0298dbea8852
BLAKE2b-256 f64d82c5d36159be8dbecca3ac804128e9d635e0ae4d761ffd2a28c09e6b5a46

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fc1f7d6952faa64773b297ec1578967e2821b97c5d7291be7b593ea26265cf0a
MD5 cddf169326c0248e1975a73d36dcfa2f
BLAKE2b-256 c6bc61410086674cf2064c755f1b5a865017404c07f8b3d7a25b9274e2db7f04

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 deac87ab42abd8e41ef6743cdd440ff0e960ed86abe5379a4694186a97552f20
MD5 d311f246dde3b70d3eeb9aac2619a1e5
BLAKE2b-256 892bfcf33efa1fbd3174f99a507addf65005e0e4dc3f66cf182d53fd687fb253

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 4f7de41536a49fd4365625565e43c187997d8f8f22660b5c39f19e0cda6c249b
MD5 030aaa1677b75a71091957b72feef44d
BLAKE2b-256 1da725ac45ad0e628ae00c9d1b8f63c1d72beb5ce77f3f76d75e54d4f3af5f4b

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 387d333f62f4ca61ac6209bdc44a0f8cd7ba753d260726ce1fd5d99fffbce13d
MD5 d65d77bff9fd323920e0eb91d6c29da2
BLAKE2b-256 424c633b97211cde8d0be9eba8d00413d17752ee560c0ad95cb5a14521ea6464

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14d12b0b19cdd484e01f1e3d2284722f06f14b9f957f9e091e2b8a0b4a82d736
MD5 dd6d7e074f71dcce24fb6e682c2b74db
BLAKE2b-256 3911ee6f0ddcb1830e137f53a0aa1be33b14c32826ba6873c1e56bda1f619e8f

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 ac7dbe3fdf0d0f2aab0a58125c3b668613d9aea5b9fed4dcb3be5084c7526f20
MD5 78e5517dcee48e4e40381991484c5a08
BLAKE2b-256 90bc6713562e534c9999c72bce8525d7f0e41ae34d93302ebef9a383a5a3faa0

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4be1ff7ceba074afddfe9abfe63aff257b9476bd1b78053e56f44f0b47f6fc82
MD5 871ab3273e3f2a1af3c9f33a8d7e9940
BLAKE2b-256 33e92e9f1acfeb66d5b21302a10a0878eb5438be8e96be6c1a86e69678c46ef0

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2cf0a844bfc2aededbcc454727f93970a29f960ce8ea09af7a8d147c806916dd
MD5 6738463d45a194fcb8d691966afd1eca
BLAKE2b-256 910caafc118f95d354e2e2ef2238b0a82a56f2b343263d477ad3e92df5d5e6fc

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 0d05a6c86ab849535c0ac6714c7d89c4c5b063e3447dfd45543afcd76e188aa6
MD5 4a2db23a1a915a603de40979ee75904c
BLAKE2b-256 308ea5b482a33c96a3fbda0560d372897ef0e517efd87578af04c354a3c44169

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0cc73c9ce792253039564d6d40a16768be34bf03fc33d7529f27d63537efc14c
MD5 e47fdece0977e5b10acc1195c79233f6
BLAKE2b-256 7e3a036ec467b876d0cd3af39324e2b44a8a9b163f5bf91a0c8e3ab5c3b0fe5a

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9388498bc01ac258c5ccda09e8b6fedd7c47a4cb1cd86299d903178fcb51d1e4
MD5 ae6f493ecf1a21875956b03d891bd374
BLAKE2b-256 2d0ec67b0dfb5689f4475f8fdd09f01c6e017f02315f3dfe3e851f87da82741f

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 dd8fad8855c9cee99131faff45f401dbfe8bce50f1cd0b6f16db4e3363c8506e
MD5 2b508e04dcbf3094db1b2324b785977a
BLAKE2b-256 057214a1621f0970ef815f31ce393de66ef7060d023207ba99e124bfffe7f56a

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 54032ff7aff5df69d0ee70924f7a34c7d683acafd8598c007bcf594cd42e9d0c
MD5 64a38349377d58e4b6db131ae0aa91f9
BLAKE2b-256 c56a05c9710cdbb19b594bb11eefe84b1904198ba9c9d6fd9a3c005099966ff3

See more details on using hashes here.

File details

Details for the file ommx-1.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45392c4704fdf934b33f809fa195010f05db3d8c2f156552ebcf1b26eab28978
MD5 38a493550646f17be042969132ecc3c4
BLAKE2b-256 d4e000aea8a2a35642141f8f6bad9d92815feb0b93921ce077c4f442d3d6197b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page