Open Mathematical prograMming eXchange (OMMX)
Project description
OMMX
Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.
Design
OMMX introduces two specification to solve the problem of data exchange in optimization field:
- Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
- OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.
Tutorial
Notebook | Open in Binder | Open in Colab |
---|---|---|
OMMX Message | ||
OMMX Artifact | ||
Cookbook | ||
Create OMMX Adapters |
To run the notebooks locally, you need to install required packages listed in requirements.txt
# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate
# Install required packages (including Jupyter)
pip install -r requirements.txt
# Start Jupyter
jupyter lab
API Reference
See DEVELOPMENT.md about developing this project.
Rust SDK
Crate name | crates.io | API Reference (stable) | API Reference (main) |
---|---|---|---|
ommx |
Python SDK
Package name | PyPI | API Reference (main) |
---|---|---|
ommx | ||
ommx-python-mip-adapter |
License
© 2024 Jij Inc.
This project is licensed under either of
- Apache License, Version 2.0, (LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or https://opensource.org/licenses/MIT)
at your option.
Contribution
TBW
Acknowledgement
This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file ommx-1.3.1-cp312-none-win_amd64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp312-none-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 783d03f79e9c213c1e477716296e768ec836f405315dd4500d8562226fc6357a |
|
MD5 | 8dfe98106ff5bc598df1a14aa7d031cf |
|
BLAKE2b-256 | 3c7dac3801d1f90cc8089a12095e12036f65abc0866d2aaa18c552d67100bf81 |
File details
Details for the file ommx-1.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.12, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3ce693511e564a6bd02dd331e0defe1e9bf2f7f2daa83d465570ffa32dfd98e3 |
|
MD5 | b5694cc5d934dbef30f93538b9830a49 |
|
BLAKE2b-256 | ab242805293b3f3b6018936706489c2e8e056dfaea4168252676518d4ddc3cb8 |
File details
Details for the file ommx-1.3.1-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | da2c564a159ee630d0c2f11705de098a7839285d3c276f7784f28b34aed1f3e2 |
|
MD5 | 57c78f5a22d9e23165562b00c511bbc5 |
|
BLAKE2b-256 | 8ed3c08f06aa933c3f4d2b9892d64d0acf316250430cc6a294596c16764eff70 |
File details
Details for the file ommx-1.3.1-cp311-none-win_amd64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp311-none-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dab307928bab1d02c67941650bd1e25e23b212c7e20e6aba75e2f9021b56dfa0 |
|
MD5 | 492c239fa37927950c26ae171c3c7894 |
|
BLAKE2b-256 | 32dff682c16d61c53d0b24603971960ff876fcc360b9608176fb4e67f914f56f |
File details
Details for the file ommx-1.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.11, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c251033c11856eb0fa1cba95ffac0155db540644568ad4434c3db00e822e526c |
|
MD5 | b8e0af706c29d885c2d38ac1125fa21b |
|
BLAKE2b-256 | 63b05336111325a475bf89540aca7f19e673f3c8c48758f8a9617a78d00ecdcd |
File details
Details for the file ommx-1.3.1-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe0ebd1588d5f0afa755cd36e9874867b6b2a828ea2c42631678094883729673 |
|
MD5 | fda6d828259f91fd1c326ef074641917 |
|
BLAKE2b-256 | 06dfa75980beb9e1c42fe0e3524c27525b93bdb7f1e4e65ef221693b309499b3 |
File details
Details for the file ommx-1.3.1-cp310-none-win_amd64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp310-none-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 40ae7c1bbb02b748dc838eff3cc07fac3e1244e2981a79c08f3201dacbebd0b7 |
|
MD5 | 7750bc33e9515de8fd55faa9f6d1a8f1 |
|
BLAKE2b-256 | 1b4e7cb6a4ad1a32d938bba145cf4bd0aee6985ccdc42dc713d4652825a40767 |
File details
Details for the file ommx-1.3.1-cp310-cp310-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp310-cp310-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.10, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f908c50f213305ef4eede66f5167b8bf0593113563aa32d450ece8d001fde9c9 |
|
MD5 | da550e034fa53272abdad8f89d0b956d |
|
BLAKE2b-256 | 5164cba2c58afcc735c00293b4e812f7c9c8a30a52515c3232291c1a3e637a44 |
File details
Details for the file ommx-1.3.1-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 39653ad58f1ba9ddf193e10fc11ff163bd6a310dc8b3e8ec30a82e3fafd26a17 |
|
MD5 | 822676b2cb21c0a3145b0369dc8eeca2 |
|
BLAKE2b-256 | 37c08dad418289124f8f9a05c52399da53cb84e4260fb8bce9d5aa35b87ab9fa |
File details
Details for the file ommx-1.3.1-cp39-none-win_amd64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp39-none-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18f22e999ae5b085575de71a1d7fb20bd15121b967b50f2c7db80ea470c44070 |
|
MD5 | 6bc9bb46b84b18eb74d172d2120b290c |
|
BLAKE2b-256 | d32e5111b6900806799a1ff99fced21a6cbfaeba24ab354123809cd01f615186 |
File details
Details for the file ommx-1.3.1-cp39-cp39-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp39-cp39-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.9, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d29953fb35c70683a50318855b67878e4722ebe8e21ab3330d27d15026bed200 |
|
MD5 | 8d12143249df0b038fea244f09c4c09b |
|
BLAKE2b-256 | 204c07c7b838610f91fcf65e52892e13d1af8dd4ac9a7d3488b21359c47bd49d |
File details
Details for the file ommx-1.3.1-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a96ea0984a3b34074ff9cff97a754a5b8cb3763afef807842e78d9b3be2b7d7e |
|
MD5 | 214d0a8f23a3dd37f1ba573c74a5441e |
|
BLAKE2b-256 | 397bc6547d62b9948476dce128c1ae676440577e638ff9b0e03940681c2bbac1 |
File details
Details for the file ommx-1.3.1-cp38-none-win_amd64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp38-none-win_amd64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac4ec4a313b0cb4b6a881b3e6bc8671a3d0a77d4c15e7790250d711ef44fff9c |
|
MD5 | 99d49426da3e842cbf984e9d387732bc |
|
BLAKE2b-256 | 20dc6e111bdb29e6df460742c2a4cf6a669d4db27bcbbdb3edfbb83e96a88fa3 |
File details
Details for the file ommx-1.3.1-cp38-cp38-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp38-cp38-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.8, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62100014bd90470d96b235c0112b7ebca33c1fc745ff3a60991bb854be685658 |
|
MD5 | 5ef81ab7067574192ec69a35f7e3a40f |
|
BLAKE2b-256 | 04fb207fc951800f3a9ddef8f0cf024305a1be765726541d6622dad58ebce55e |
File details
Details for the file ommx-1.3.1-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ommx-1.3.1-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5cdc0671a496adde96ebc3652c0de24e68481b7cd5149589bd0f8bc44025ee6b |
|
MD5 | f50f42da2ff0083a286740633a0c7a2b |
|
BLAKE2b-256 | b9d6165c99148dbd121cad454ccd3c802ee6144b862924834a8e400db261e69e |