Skip to main content

Open Mathematical prograMming eXchange (OMMX)

Project description

OMMX

main main

Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.

Design

OMMX introduces two specification to solve the problem of data exchange in optimization field:

  • Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
  • OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.

Tutorial

Notebook Open in Binder Open in Colab
OMMX Message Binder Open In Colab
OMMX Artifact Binder Open In Colab
Cookbook Binder Open In Colab
Create OMMX Adapters Binder Open In Colab

To run the notebooks locally, you need to install required packages listed in requirements.txt

# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate

# Install required packages (including Jupyter)
pip install -r requirements.txt

# Start Jupyter
jupyter lab

API Reference

See DEVELOPMENT.md about developing this project.

Rust SDK

Crate name crates.io API Reference (stable) API Reference (main)
ommx ommx docs.rs main

Python SDK

Package name PyPI API Reference (main)
ommx ommx main
ommx-python-mip-adapter ommx-python-mip-adapter main

License

© 2024 Jij Inc.

This project is licensed under either of

at your option.

Contribution

TBW

Acknowledgement

BRIDGE This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ommx-1.3.1-cp312-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

ommx-1.3.1-cp312-cp312-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

ommx-1.3.1-cp312-cp312-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ommx-1.3.1-cp311-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

ommx-1.3.1-cp311-cp311-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

ommx-1.3.1-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ommx-1.3.1-cp310-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

ommx-1.3.1-cp310-cp310-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

ommx-1.3.1-cp310-cp310-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ommx-1.3.1-cp39-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

ommx-1.3.1-cp39-cp39-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

ommx-1.3.1-cp39-cp39-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ommx-1.3.1-cp38-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

ommx-1.3.1-cp38-cp38-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

ommx-1.3.1-cp38-cp38-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ommx-1.3.1-cp312-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.1-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 783d03f79e9c213c1e477716296e768ec836f405315dd4500d8562226fc6357a
MD5 8dfe98106ff5bc598df1a14aa7d031cf
BLAKE2b-256 3c7dac3801d1f90cc8089a12095e12036f65abc0866d2aaa18c552d67100bf81

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3ce693511e564a6bd02dd331e0defe1e9bf2f7f2daa83d465570ffa32dfd98e3
MD5 b5694cc5d934dbef30f93538b9830a49
BLAKE2b-256 ab242805293b3f3b6018936706489c2e8e056dfaea4168252676518d4ddc3cb8

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 da2c564a159ee630d0c2f11705de098a7839285d3c276f7784f28b34aed1f3e2
MD5 57c78f5a22d9e23165562b00c511bbc5
BLAKE2b-256 8ed3c08f06aa933c3f4d2b9892d64d0acf316250430cc6a294596c16764eff70

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 dab307928bab1d02c67941650bd1e25e23b212c7e20e6aba75e2f9021b56dfa0
MD5 492c239fa37927950c26ae171c3c7894
BLAKE2b-256 32dff682c16d61c53d0b24603971960ff876fcc360b9608176fb4e67f914f56f

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c251033c11856eb0fa1cba95ffac0155db540644568ad4434c3db00e822e526c
MD5 b8e0af706c29d885c2d38ac1125fa21b
BLAKE2b-256 63b05336111325a475bf89540aca7f19e673f3c8c48758f8a9617a78d00ecdcd

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe0ebd1588d5f0afa755cd36e9874867b6b2a828ea2c42631678094883729673
MD5 fda6d828259f91fd1c326ef074641917
BLAKE2b-256 06dfa75980beb9e1c42fe0e3524c27525b93bdb7f1e4e65ef221693b309499b3

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 40ae7c1bbb02b748dc838eff3cc07fac3e1244e2981a79c08f3201dacbebd0b7
MD5 7750bc33e9515de8fd55faa9f6d1a8f1
BLAKE2b-256 1b4e7cb6a4ad1a32d938bba145cf4bd0aee6985ccdc42dc713d4652825a40767

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f908c50f213305ef4eede66f5167b8bf0593113563aa32d450ece8d001fde9c9
MD5 da550e034fa53272abdad8f89d0b956d
BLAKE2b-256 5164cba2c58afcc735c00293b4e812f7c9c8a30a52515c3232291c1a3e637a44

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 39653ad58f1ba9ddf193e10fc11ff163bd6a310dc8b3e8ec30a82e3fafd26a17
MD5 822676b2cb21c0a3145b0369dc8eeca2
BLAKE2b-256 37c08dad418289124f8f9a05c52399da53cb84e4260fb8bce9d5aa35b87ab9fa

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 18f22e999ae5b085575de71a1d7fb20bd15121b967b50f2c7db80ea470c44070
MD5 6bc9bb46b84b18eb74d172d2120b290c
BLAKE2b-256 d32e5111b6900806799a1ff99fced21a6cbfaeba24ab354123809cd01f615186

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d29953fb35c70683a50318855b67878e4722ebe8e21ab3330d27d15026bed200
MD5 8d12143249df0b038fea244f09c4c09b
BLAKE2b-256 204c07c7b838610f91fcf65e52892e13d1af8dd4ac9a7d3488b21359c47bd49d

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a96ea0984a3b34074ff9cff97a754a5b8cb3763afef807842e78d9b3be2b7d7e
MD5 214d0a8f23a3dd37f1ba573c74a5441e
BLAKE2b-256 397bc6547d62b9948476dce128c1ae676440577e638ff9b0e03940681c2bbac1

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 ac4ec4a313b0cb4b6a881b3e6bc8671a3d0a77d4c15e7790250d711ef44fff9c
MD5 99d49426da3e842cbf984e9d387732bc
BLAKE2b-256 20dc6e111bdb29e6df460742c2a4cf6a669d4db27bcbbdb3edfbb83e96a88fa3

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 62100014bd90470d96b235c0112b7ebca33c1fc745ff3a60991bb854be685658
MD5 5ef81ab7067574192ec69a35f7e3a40f
BLAKE2b-256 04fb207fc951800f3a9ddef8f0cf024305a1be765726541d6622dad58ebce55e

See more details on using hashes here.

File details

Details for the file ommx-1.3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5cdc0671a496adde96ebc3652c0de24e68481b7cd5149589bd0f8bc44025ee6b
MD5 f50f42da2ff0083a286740633a0c7a2b
BLAKE2b-256 b9d6165c99148dbd121cad454ccd3c802ee6144b862924834a8e400db261e69e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page