Skip to main content

Open Mathematical prograMming eXchange (OMMX)

Project description

OMMX

main main

Open Mathematical prograMming eXchange (OMMX) is an open ecosystem that empowers mathematical programming and optimization developers and reserchers.

Design

OMMX introduces two specification to solve the problem of data exchange in optimization field:

  • Protocol buffers based data schema called OMMX Message. This helps to store the optimization models and their solutions in language and framework agnostic way.
  • OCI Artifact based packaging and distribution specification called OMMX Artifact. This helps to store your data with metadata and to exchange them with others as a container image.

Tutorial

Notebook Open in Binder Open in Colab
OMMX Message Binder Open In Colab
OMMX Artifact Binder Open In Colab
Cookbook Binder Open In Colab
Create OMMX Adapters Binder Open In Colab

To run the notebooks locally, you need to install required packages listed in requirements.txt

# Optional: create a virtual environment
python -m venv .venv && source .venv/bin/activate

# Install required packages (including Jupyter)
pip install -r requirements.txt

# Start Jupyter
jupyter lab

API Reference

See DEVELOPMENT.md about developing this project.

Rust SDK

Crate name crates.io API Reference (stable) API Reference (main)
ommx ommx docs.rs main

Python SDK

Package name PyPI API Reference (main)
ommx ommx main
ommx-python-mip-adapter ommx-python-mip-adapter main

License

© 2024 Jij Inc.

This project is licensed under either of

at your option.

Contribution

TBW

Acknowledgement

BRIDGE This work was performed for Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Promoting the application of advanced quantum technology platforms to social issues”(Funding agency : QST).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ommx-1.3.2-cp312-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

ommx-1.3.2-cp312-cp312-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

ommx-1.3.2-cp312-cp312-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ommx-1.3.2-cp311-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

ommx-1.3.2-cp311-cp311-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

ommx-1.3.2-cp311-cp311-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ommx-1.3.2-cp310-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

ommx-1.3.2-cp310-cp310-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

ommx-1.3.2-cp310-cp310-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ommx-1.3.2-cp39-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

ommx-1.3.2-cp39-cp39-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

ommx-1.3.2-cp39-cp39-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ommx-1.3.2-cp38-none-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

ommx-1.3.2-cp38-cp38-manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

ommx-1.3.2-cp38-cp38-macosx_11_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file ommx-1.3.2-cp312-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.2-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.2-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 8e498257011965e8d71e7b5b9de104c45bb52d8fd63b48171fb26c18c4bccfe9
MD5 2c806ce2f21ab92e10065d6b3f7032b7
BLAKE2b-256 e8876f1aa3702229e03757fe4e74a6ec20df00b8b118f841aa070691dc06fe4f

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0f3d27b7c3ec74b4c4465640bd51990d5c9afb1a45c8067d2186032a0e91c5f7
MD5 f4f48ee886e2df39432d503d0e27d946
BLAKE2b-256 9ff3ba74989050314ef7526d4c29f3090be3e056417e091136772d72fd3dcf47

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 96368797d37e1fcfd9d63b7db850267dc6c6c4adaabcf1cc600768e545dc1cf6
MD5 7922f9b915ed453b3b6ab5ffd8c2ca3f
BLAKE2b-256 583fae00e7904b7c787a3b9473d9e126a107a9f6b9c15ba913fe2870bfd68eb0

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp311-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.2-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 5deb2c79c42abb8ea595d9f1ed1cc4836528c8172353f0bc387ebbbb39f5cd65
MD5 4053e107309f12d2b0f912e6ba1889a1
BLAKE2b-256 2f5332b065c3717056d0edc64bade89593579f9d418cc41c5ef793bcca88871f

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f743f209419f00783d8b831fa01352e5b14dcb95f8fdf28b4d8aaa45fa6a2904
MD5 f4ebbf8eb32531f501311f13eff1bffe
BLAKE2b-256 4652e5d09c6e4414182ff8954e9c15801e7a976d53093fe365674568b4c63d0d

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f9807ee81d3d2a0b0f493a104c07f5b3699dbf03c4b0eb0a5e9d5c4138236f9f
MD5 ea42a618e825ab7a92b0d1126b91d8d2
BLAKE2b-256 5774efd85dcc8c54ead43bf4f22f427ea45783a2c3b45b093b43de05d1b4b131

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp310-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.2-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 f0334ea4c2c3b462846b9ecc3681ac7caf518c5ca720890def2f06ab740c2d3d
MD5 4ddd2f6de356b858de860433341bf50a
BLAKE2b-256 69976ea38feb91324fc65815f5b7cdba272222336e856f322194ca821f1f7f7e

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4a8294b232f3146217ca63abbbd88a247c174d202cf4b3c50686ce1f12313e47
MD5 87e04bf7f22df33644b4ea00877809a9
BLAKE2b-256 c78ea7a46fd2889e52339bc9d4bbd48b2e9cc8d53f3391cebfe5f1826ac98650

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06b6786685b815e9e0ed3b3069ca43cfa935b4804be71b8d2e444fc372a63059
MD5 e2c5d598f5a9aa5a5839b0d0faa06990
BLAKE2b-256 2d20e63b8db17ca86b547eff07c7454f753ff2399f0770233125dd10d7b2dda8

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp39-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.2-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 00e8650db5706220f406167afbebab19ea0247dcb8af20087aedc514fc50ebce
MD5 ccfd2dbd1107b4fa8b84f2e1a051129d
BLAKE2b-256 e38664d90b2a3e3251d9c0b13dd05f604efe7c1e64f7129528cf7c7f0e04c585

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d76187c522508817f524a7274f793452087c30ad4ba03a055290b35e1a4af1e8
MD5 9bf2435350f2d831a533b279f3219d8c
BLAKE2b-256 b88e16f6dcaff64bbb0d28869ebf6a887128844797cf215f843683a812a99398

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c61e66d111912109eb35c80fa2979d814bb6d1a10a0969ddba264f9a0a54a92c
MD5 626613c6c27619cf3e0e52009e46c566
BLAKE2b-256 f612f83101587d6cc45a1fa34c4f47b11b531de461765c9f6fbd0e98c858e3cb

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: ommx-1.3.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ommx-1.3.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 e91e7a0cc3b5998ae5143a644ea17eabfcfc5271a203f349acbc6b4216aade3a
MD5 3dad03b90bc2d0ca63545c4b497dde03
BLAKE2b-256 893b7cb75ce7accaf849f5a1504dc046a8ddc829d9de88b46141c3051e19e2fa

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7d48dc96635adae02c1336587dfb755833f47bafeaf21c15c9a67bab24d5d6f2
MD5 75e60b09990dd2ec60e43a41d7e02f78
BLAKE2b-256 170c1caa309b7429f3a3bf389c025381521c80caa38ef144363b1760bbc74db5

See more details on using hashes here.

File details

Details for the file ommx-1.3.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ommx-1.3.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0dbc9a63b23f2ae57f2858125e151f81bb66fa28961d4e657a54ddab4619a78b
MD5 a4ef66b4315ecfbb9dbeb4d6f6814e6f
BLAKE2b-256 4d7ecd0d072467f29786e70dfc3869d676a213db6417be052d1ea20a780a1833

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page