Skip to main content

Python utility for text embeddings in ONNX.

Project description

onnx_embedding_models

utilities for loading and running text embeddings with onnx

CHANGELOG

0.0.14 - 2024-06-19

  • support for loading from any huggingface repo with from_pretrained (provided it has a tokenizer and some onnx model in it)
  • added mxbai-embed-large to the model registry
  • embedding model .encode method now returns numpy arrays by default instead of lists

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx_embedding_models-0.0.15.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

onnx_embedding_models-0.0.15-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file onnx_embedding_models-0.0.15.tar.gz.

File metadata

File hashes

Hashes for onnx_embedding_models-0.0.15.tar.gz
Algorithm Hash digest
SHA256 35c69052f617d4366610c94f3d5f3add0026b9fbd7825f9979df30c4c2c4ccb5
MD5 2402a406334f5a3b9a56c938acc91614
BLAKE2b-256 d937aa6c937bc643394efad56339a3fe1786fe2ac960c290631810b0483de495

See more details on using hashes here.

File details

Details for the file onnx_embedding_models-0.0.15-py3-none-any.whl.

File metadata

File hashes

Hashes for onnx_embedding_models-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 11ee0554ce31838b284d1ab2939f2d2056afae3885d407019caefddab9653bd4
MD5 9123d287a9c2a87fe2080cd3e0553f79
BLAKE2b-256 771a373f0cdf48f9cf45c3c899c90d718260619b90028a2cf2335ceb7cddd667

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page