Skip to main content

Nice Onnx to Pytorch converter

Project description

onnx2torch is an ONNX to PyTorch converter. Our converter:

  • Is easy to use – Convert the ONNX model with the function call convert;
  • Is easy to extend – Write your own custom layer in PyTorch and register it with @add_converter;
  • Convert back to ONNX – You can convert the model back to ONNX using the torch.onnx.export function.

If you find an issue, please let us know! And feel free to create merge requests.

Please note that this converter covers only a limited number of PyTorch / ONNX models and operations. Let us know which models you use or want to convert from onnx to torch here.

Installation

pip install onnx2torch

or

conda install -c conda-forge onnx2torch

Usage

Below you can find some examples of use.

Convert

import torch
from onnx2torch import convert

# Path to ONNX model
onnx_model_path = '/some/path/mobile_net_v2.onnx'
# You can pass the path to the onnx model to convert it or...
torch_model_1 = convert(onnx_model_path)

# Or you can load a regular onnx model and pass it to the converter
onnx_model = onnx.load(onnx_model_path)
torch_model_2 = convert(onnx_model)

Execute

We can execute the returned PyTorch model in the same way as the original torch model.

import onnxruntime as ort
# Create example data
x = torch.ones((1, 2, 224, 224)).cuda()

out_torch = torch_model_1(x)

ort_sess = ort.InferenceSession(onnx_model_path)
outputs_ort = ort_sess.run(None, {'input': x.numpy()})

# Check the Onnx output against PyTorch
print(torch.max(torch.abs(outputs_ort - out_torch.detach().numpy())))
print(np.allclose(outputs_ort, out_torch.detach().numpy(), atol=1.e-7))

Models

We have tested the following models:

Segmentation models:

  • DeepLabv3plus
  • DeepLabv3 resnet50 (torchvision)
  • HRNet
  • UNet (torchvision)
  • FCN resnet50 (torchvision)
  • lraspp mobilenetv3 (torchvision)

Detection from MMdetection:

Classification from torchvision:

  • Resnet18
  • Resnet50
  • MobileNet v2
  • MobileNet v3 large
  • EfficientNet_b{0, 1, 2, 3}
  • WideResNet50
  • ResNext50
  • VGG16
  • GoogleleNet
  • MnasNet
  • RegNet

Transformers:

  • Vit
  • Swin
  • GPT-J

:page_facing_up: List of currently supported operations can be founded here.

How to add new operations to converter

Here we show how to add the module:

  1. Supported by both PyTorch and ONNX and has the same behaviour.

An example of such a module is Relu

@add_converter(operation_type='Relu', version=6)
@add_converter(operation_type='Relu', version=13)
@add_converter(operation_type='Relu', version=14)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
    return OperationConverterResult(
        torch_module=nn.ReLU(),
        onnx_mapping=onnx_mapping_from_node(node=node),
    )

Here we have registered an operation named Relu for opset versions 6, 13, 14. Note that the torch_module argument in OperationConverterResult must be a torch.nn.Module, not just a callable object! If Operation's behaviour differs from one opset version to another, you should implement it separately.

  1. Operations supported by PyTorch and ONNX BUT have different behaviour
class OnnxExpand(nn.Module, OnnxToTorchModuleWithCustomExport):

    def forward(self, input_tensor: torch.Tensor, shape: torch.Tensor) -> torch.Tensor:
        # wrap all forward function logic to local function without arguments
        def _forward():
            return input_tensor * torch.ones(torch.Size(shape), dtype=input_tensor.dtype, device=input_tensor.device)

        if torch.onnx.is_in_onnx_export():
            # we need to send forward function wrapper as the first argument, all other
            # arguments will be send to symbolic method on the next step
            return _ExpandExportToOnnx.set_forward_and_apply(_forward, input_tensor, shape)

        # execute forward
        return _forward()


class _ExpandExportToOnnx(CustomExportToOnnx):

    @staticmethod
    def symbolic(graph: torch_C.Graph, input_tensor: torch_C.Value, shape: torch_C.Value, *args) -> torch_C.Value:
        return graph.op('Expand', input_tensor, shape, outputs=1)


@add_converter(operation_type='Expand', version=8)
@add_converter(operation_type='Expand', version=13)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:  # pylint: disable=unused-argument
    return OperationConverterResult(
        torch_module=OnnxExpand(),
        onnx_mapping=onnx_mapping_from_node(node=node),
    )

Here we have used a trick to convert the model from torch back to ONNX by defining the custom _ExpandExportToOnnx.

Acknowledgments

Thanks to Dmitry Chudakov @cakeofwar42 for his contributions.
Special thanks to Andrey Denisov @denisovap2013 for the logo design.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx2torch-1.5.4.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

onnx2torch-1.5.4-py3-none-any.whl (111.1 kB view details)

Uploaded Python 3

File details

Details for the file onnx2torch-1.5.4.tar.gz.

File metadata

  • Download URL: onnx2torch-1.5.4.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for onnx2torch-1.5.4.tar.gz
Algorithm Hash digest
SHA256 df837b557a63540223d85fde4a1d679fde0ca8d8bb89d5379c030b01eddc9c24
MD5 aa21df563c173105bea4cea8611af4f1
BLAKE2b-256 d1168a34f0a74368a202dfcc3fc330dd528b57b564783bea2ebed68b1672ff79

See more details on using hashes here.

File details

Details for the file onnx2torch-1.5.4-py3-none-any.whl.

File metadata

  • Download URL: onnx2torch-1.5.4-py3-none-any.whl
  • Upload date:
  • Size: 111.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.13

File hashes

Hashes for onnx2torch-1.5.4-py3-none-any.whl
Algorithm Hash digest
SHA256 fd1a0fe05072bfb9f3d86d9330299b130b41f11bd4ae634db17078974e711725
MD5 f032620e65335c39c87b63a4e3c993cd
BLAKE2b-256 280b1383c75971859d49e8327c6100985e3dcf05a8e043c3f66534b0f8aece2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page