Skip to main content

Open-Meteo Python Library

Project description

Open-Meteo API Python Client

This ia an API client to get weather data from the Open-Meteo Weather API based on the Python library requests.

Instead of using JSON, the API client uses FlatBuffers to transfer data. Encoding data in FlatBuffers is more efficient for long time-series data. Data can be transferred to numpy, pandas, or polars using Zero-Copy to analyze large amount of data quickly. The schema definition files can be found on GitHub open-meteo/sdk.

This library is primarily designed for data-scientists to process weather data. In combination with the Open-Meteo Historical Weather API data from 1940 onwards can be analyzed quickly.

Basic Usage

The following example gets an hourly temperature, wind speed and precipitation forecast for Berlin. Additionally, the current temperature and relative humidity is retrieved. It is recommended to only specify the required weather variables.

# pip install openmeteo-requests

import openmeteo_requests
from openmeteo_sdk.Variable import Variable

om = openmeteo_requests.Client()
params = {
    "latitude": 52.54,
    "longitude": 13.41,
    "hourly": ["temperature_2m", "precipitation", "wind_speed_10m"],
    "current": ["temperature_2m", "relative_humidity_2m"]
}

responses = om.weather_api("https://api.open-meteo.com/v1/forecast", params=params)
response = responses[0]
print(f"Coordinates {response.Latitude()}°N {response.Longitude()}°E")
print(f"Elevation {response.Elevation()} m asl")
print(f"Timezone {response.Timezone()} {response.TimezoneAbbreviation()}")
print(f"Timezone difference to GMT+0 {response.UtcOffsetSeconds()} s")

# Current values
current = response.Current()
current_variables = list(map(lambda i: current.Variables(i), range(0, current.VariablesLength())))
current_temperature_2m = next(filter(lambda x: x.Variable() == Variable.temperature and x.Altitude() == 2, current_variables))
current_relative_humidity_2m = next(filter(lambda x: x.Variable() == Variable.relative_humidity and x.Altitude() == 2, current_variables))

print(f"Current time {current.Time()}")
print(f"Current temperature_2m {current_temperature_2m.Value()}")
print(f"Current relative_humidity_2m {current_relative_humidity_2m.Value()}")

Note 1: You can also supply a list of latitude and longitude coordinates to get data for multiple locations. The API will return a array of results, hence in this example, we only consider the first location with response = responses[0].

Note 2: Please note the function calls () for each attribute like Latitude(). Those function calls are necessary due to the FlatBuffers format to dynamically get data from an attribute without expensive parsing.

NumPy

If you are using NumPy you can easily get hourly or daily data as NumPy array of type float.

import numpy as np

hourly = response.Hourly()
hourly_time = range(hourly.Time(), hourly.TimeEnd(), hourly.Interval())
hourly_variables = list(map(lambda i: hourly.Variables(i), range(0, hourly.VariablesLength())))

hourly_temperature_2m = next(filter(lambda x: x.Variable() == Variable.temperature and x.Altitude() == 2, hourly_variables)).ValuesAsNumpy()
hourly_precipitation = next(filter(lambda x: x.Variable() == Variable.precipitation, hourly_variables)).ValuesAsNumpy()
hourly_wind_speed_10m = next(filter(lambda x: x.Variable() == Variable.wind_speed and x.Altitude() == 10, hourly_variables)).ValuesAsNumpy()

Pandas

After using NumPy to create arrays for hourly data, you can use Pandas to create a DataFrame from hourly data like follows:

import pandas as pd

hourly_data = {"date": pd.date_range(
	start = pd.to_datetime(hourly.Time(), unit = "s"),
	end = pd.to_datetime(hourly.TimeEnd(), unit = "s"),
	freq = pd.Timedelta(seconds = hourly.Interval()),
	inclusive = "left"
)}
hourly_data["temperature_2m"] = hourly_temperature_2m
hourly_data["precipitation"] = hourly_precipitation
hourly_data["wind_speed_10m"] = hourly_wind_speed_10m

hourly_dataframe_pd = pd.DataFrame(data = hourly_data)
print(hourly_dataframe_pd)
#                    date  temperature_2m  precipitation  wind_speed_10m
# 0   2024-06-21 00:00:00       17.437000            0.0        6.569383
# 1   2024-06-21 01:00:00       17.087000            0.0        6.151683
# 2   2024-06-21 02:00:00       16.786999            0.0        7.421590
# 3   2024-06-21 03:00:00       16.337000            0.0        5.154416

Polars

Additionally, Polars can also be used to create a DataFrame from hourly data using the NumPy arrays created previously:

import polars as pl
from datetime import datetime, timedelta, timezone

start = datetime.fromtimestamp(hourly.Time(), timezone.utc)
end = datetime.fromtimestamp(hourly.TimeEnd(), timezone.utc)
freq = timedelta(seconds = hourly.Interval())

hourly_dataframe_pl = pl.select(
    date = pl.datetime_range(start, end, freq, closed = "left"),
    temperature_2m = hourly_temperature_2m,
    precipitation = hourly_precipitation,
    wind_speed_10m = hourly_wind_speed_10m
)
print(hourly_dataframe_pl)
# ┌─────────────────────────┬────────────────┬───────────────┬────────────────┐
# │ date                    ┆ temperature_2m ┆ precipitation ┆ wind_speed_10m │
# │ ---                     ┆ ---            ┆ ---           ┆ ---            │
# │ datetime[μs, UTC]       ┆ f32            ┆ f32           ┆ f32            │
# ╞═════════════════════════╪════════════════╪═══════════════╪════════════════╡
# │ 2024-06-21 00:00:00 UTC ┆ 17.437         ┆ 0.0           ┆ 6.569383       │
# │ 2024-06-21 01:00:00 UTC ┆ 17.087         ┆ 0.0           ┆ 6.151683       │
# │ 2024-06-21 02:00:00 UTC ┆ 16.786999      ┆ 0.0           ┆ 7.42159        │
# │ 2024-06-21 03:00:00 UTC ┆ 16.337         ┆ 0.0           ┆ 5.154416       │

Caching Data

If you are working with large amounts of data, caching data can make it easier to develop. You can pass a cached session from the library requests-cache to the Open-Meteo API client.

The following example stores all data indefinitely (expire_after=-1) in a SQLite database called .cache.sqlite. For more options read the requests-cache documentation.

Additionally, retry-requests to automatically retry failed API calls in case there has been any unexpected network or server error.

# pip install openmeteo-requests
# pip install requests-cache retry-requests

import openmeteo_requests
import requests_cache
from retry_requests import retry

# Setup the Open-Meteo API client with a cache and retry mechanism
cache_session = requests_cache.CachedSession('.cache', expire_after=-1)
retry_session = retry(cache_session, retries=5, backoff_factor=0.2)
om = openmeteo_requests.Client(session=retry_session)

# Using the client object `om` will now cache all weather data

TODO

  • Document multi location/timeinterval usage
  • Document FlatBuffers data structure
  • Document time start/end/interval
  • Document timezones behavior
  • Document pressure level and upper level
  • Document endpoints for air quality, etc
  • Consider dedicated pandas library to convert responses quickly

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

openmeteo_requests-1.3.0.tar.gz (58.8 kB view details)

Uploaded Source

Built Distribution

openmeteo_requests-1.3.0-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file openmeteo_requests-1.3.0.tar.gz.

File metadata

  • Download URL: openmeteo_requests-1.3.0.tar.gz
  • Upload date:
  • Size: 58.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for openmeteo_requests-1.3.0.tar.gz
Algorithm Hash digest
SHA256 6606975d1939669b69ee1ea46cc5356a03aa99f2259b7b8a2e73841b478eb640
MD5 ab41ae286373143ccf2483f4f13cf9f3
BLAKE2b-256 d60f41364bf4f30164cb0d7c357e6b3c099f85995d946ae31959a52605253da5

See more details on using hashes here.

File details

Details for the file openmeteo_requests-1.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for openmeteo_requests-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e9b4eb9f4a3d234f573be6f83f1c179f2f2f2bbc6533a1541a3fa0a0eb1df54b
MD5 45a30295c87e329fe5de1b9ddee538c8
BLAKE2b-256 133196209383687cf35055eb628e3a9207a07ac2d5faf6e70076f459435a989e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page