Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/54db50b893b72990a10381710edb2bf4b506f78e

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-win_amd64.whl (36.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-macosx_10_15_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-win_amd64.whl (36.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-macosx_10_15_x86_64.whl (37.7 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-win_amd64.whl (36.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-macosx_10_15_x86_64.whl (37.7 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-win_amd64.whl (36.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-macosx_10_15_x86_64.whl (37.7 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a29b1128837f00d140c204b1fdad800de1a55f270a1ec7aadb801c5ba2e9a863
MD5 e701ef982fabc951704861563a23b270
BLAKE2b-256 01d6ae56edc97a52543156f2795d361e6f3253d18d230d37c1d0dce63f2c36cc

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 b0e0165933b2b844b63356b02e4793e4666b6a7004233979dee72cc538ae4b61
MD5 b5411bf3ae7f00b1131728d0549e6dd3
BLAKE2b-256 893cb18c67d511eb65de84a928d471b309236434e6a6f8b2101e666231b9ee7b

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77045e6e72313da3f33d8c2feb521a26f08edd212928ffc9542f062bb06d7325
MD5 c974fff9138940862fc2c019d32a1032
BLAKE2b-256 4fa31a20081ee0c72875e6a3ae86365810cb2f354b273336dcdeb66798b77ccf

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e068d9cdb78389c1b4b3c18953c597174f727b6800206b263dc84d173b72502a
MD5 06c91f1b8163ad467299ffee646d7e81
BLAKE2b-256 9a8a272ceeca4d1bccef0e3ed420b26e45f32e5e793fd6d06b117017d378f09d

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bd09079336a6a6e146629674f96165996c2eff81a54ae017e248227a2de8fc8f
MD5 ca7afae8af7b060c294b5709d5bbc4d3
BLAKE2b-256 3d838e1957e626fe5ccbf3d00294b7da08f3e734000edaffd631624a355c5475

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 27dafffe842209502f35b3336765853c194ac937cf83b794effdc6497edd3dda
MD5 8450f0f464ad4c64b1a2bd411d0913b4
BLAKE2b-256 9d2e63cda8a3324d44bc94533aa066bbf679bac8ec5869fe5dbf92966169f064

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 c82c640254e2cbbebe5ca1a1fa87d9f58c32c406b1dbf1e8010143e04039a3f7
MD5 fa843b8c88953e5dea1b6934b06a4ddf
BLAKE2b-256 60d2f3cf0b1ecb46232e298a25206443154c26477b224af9664f31b0cec09db2

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0dfcc169fd66331744fcc77de9698f41651dc92caa78b93d48695095bd31caef
MD5 9d8384a5c003ae613a0ce6d07e52e5a4
BLAKE2b-256 d6f1db60524950dcf5fe79d9f6fb549220ef863a3de2be00a8cb80f14e1b4b24

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0750422f6ceb1414d572a3341de2b2b247f0325086829c2bed3e2b65d94a3898
MD5 cf83cd9495f471e326f96af8a518066d
BLAKE2b-256 b915705cf00492b05faa8b0b16936bc483e9ed33c24394729b1361024268288d

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0269185c8f6f48ab7d641085a98ff78edb05fb01bac1daabb19cfb6b58c39c60
MD5 731c5bf5772ae26f9338c303444efea8
BLAKE2b-256 3e0a297c346350734ad1f40710ae200d5a237535ef6574f812db52f9f9f37adb

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f6801f5938bf4ba3c32aefbbc688a80b2d3ce3dba3256d20cfd3bd6f9f4c4250
MD5 92841fc85189b6768ca16ecf469237e3
BLAKE2b-256 ff5e9c0f88a02e103749297674558c61de6f0e50ba046f67ac6cf515e51df377

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 b076178ed598f1ce09795cc02fea3a32394cd2f81274ece84a44f5f8295c40d9
MD5 dc084e808ab2d1fcdc037e902d39a102
BLAKE2b-256 85cf8b090384babcaab6d3897d65bd712435360987dcc4c288abbbd8145d8991

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d5f64489f686d5b92c1d446dd88f36f20e90e0c88f2f8a5175bf2fe1d921127
MD5 c935a47bdc9294a7d958215642633bb8
BLAKE2b-256 7f85641969fbeba40342b2420620641387a96bbab7034bccf01844356c2c4704

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4794ac8109ad976a20a4ae2dc6dfc92594df3738001f369adcfe9779673d917e
MD5 5071cf5558f7014f26378b8842ac0b3f
BLAKE2b-256 87143b406b3d78a63050b1101f991b5d43e965d3a53067f73b0d338f9eb7b982

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bb36e71f530126ab09b4d8b67497e707fdac9cd9f18d6fdfa24be2bbd0026605
MD5 35b729d0046353904e10581ad3066e1b
BLAKE2b-256 a85e0e4866cd616746c45afee41fe0a0064e089b55befb7293dcd4d9794dd640

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cb6a8b5258d852e7f4543d61e7284504119ba99bb4b2819650e893880f27734f
MD5 3d33070eb18586498d4752c05986e787
BLAKE2b-256 c9c77497b065fc8a125a87e5ac71382ddc0c88071be444bd7a5ed737f4c6b088

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 19f4d9f6c97ca07356a963910ed04fbf559804e8ffd514aac189bfac63244369
MD5 52aa92e9dfb7496a08eb4ab8749748cb
BLAKE2b-256 1963af90a40bd9815b18a0cc87aa178c3c9100688b2799b7b824ae1b5df8f2df

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08c2cfa532995c68db87d828b2d9c710a2b343e078f8e708dd0d8eff7693954c
MD5 a564aa798d4b12ce3be5cf5082bc612e
BLAKE2b-256 92042c882fee7c54b98b0cbf3e2bf2bdf2ad9b6cfbef45d3ca7724656f05d78a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 153654ebcfff00782c18b824f36ad3a9315c043ea0f15b4f0aa201198f9b1adb
MD5 fb5b9ced73007698efb60a5705379ff1
BLAKE2b-256 32944309a40ed55359261b05a0b04e4f2c63c41a2a9107ccaf764f2900dc31d9

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241017-17045-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2dc3a5fbfd47ed2980f4316ca2b582f8c4bae529e27c3d60f80379a7cdc07efd
MD5 a37b82a3a97160d8c253a029bfe0c686
BLAKE2b-256 4379d3bb7a2adcba13dd458cae7818424c64ea565441a4a4e5a872ec490a17bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page