Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/85253c4f6717d3b512821b784bd575fa92a777fd

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-win_amd64.whl (36.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-macosx_11_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-macosx_10_15_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-win_amd64.whl (36.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-macosx_10_15_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-win_amd64.whl (36.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-macosx_10_15_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-win_amd64.whl (36.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-manylinux_2_31_aarch64.whl (24.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-macosx_11_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-macosx_10_15_x86_64.whl (37.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 396f9fb819c33476c69bdb43ce53662fa36179dcacd7f03f641349e411949587
MD5 28a7a27da5c1ce199772753deb36a776
BLAKE2b-256 be5f866155edce90740adda79b03629966702b60e48aaae690047dd2848032a6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 7139b824ee94f658748289a763888510ceda096dc44719755c6f6cbe26a4ff6e
MD5 dd9985fd015a57547f71c96764d4e8c4
BLAKE2b-256 2f12fe1b0dd55a7d5942a7ae22724ab4e9734960c5038ac531b14757542870bc

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64d88140d1cd6103f0ea5f0a711eb2281d9b81c8e4819bed037af0a0b8738c71
MD5 c9ef25ae54d377d3fcce3658336204fc
BLAKE2b-256 93199fc232a8d6500eef234519ca8f3cce1d411431b206daae6cfef4ffbb554c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f9dad0ae5144c72319a6172e3426d7efb9020ed1e37b7d5b9bae8cc58984369
MD5 b5043fbaaf2b751a6b8da871a70ff5bb
BLAKE2b-256 20d204f114d6bb0b7a21cd10e3e8a2f310d404e4450656d999d8e2369bf3a57a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e6f06f2c7a9132abc3fcf6664bb2adfc715bb0d6128e192fc11a966134fe1a55
MD5 10d08ad3e8013bd0550e54bfbfbb59a0
BLAKE2b-256 80be20478653e4f4f06f510907168a220c5786a7626d391141789e214ac3cbe7

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fa20abd289d478789078adecb316232cb60afe96fc740cfd58a5ff8fccdd8027
MD5 a68df357ede6dd44d02924367d7fe278
BLAKE2b-256 142326a2db7ab02a44bd7e29537ad310b0e2f8a3c5eb1c6fa677893e1228d75f

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 f81809b14ed1bcc36097bff39c1fc6052b530603aa668834347713eb3124e946
MD5 3b6701b15f8f49dbe15ce93b027b319a
BLAKE2b-256 2a593124e99a8f799753ed11164944704885e39893c47342a7b5f9ed3592952f

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5245aa665398c237b908985b868c8b3de9b9e20f91eed6abc8265a535308d9a
MD5 3ac1f7a90142b25e216bdcfcc77471e4
BLAKE2b-256 3290db0d9280614130ed453a00b95a666d482192ece27af5da1c32ac717c5a9f

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 adcc4a8bd82aab07c9f8399a9e92ad4c2751c8bee89b3374a489a81f27e03762
MD5 1b9807146f4aeb23c4d9aefaa4372192
BLAKE2b-256 02a7ff9e8ebbcd4ccc4e1552a33b6a78543106526fa2368e70926bbe7a59656c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e8115248dfbcf9f51b0844d98bb30b6cf6340fb347f8b7891f5f1dcdb04ceac1
MD5 b80a0e07113a1c8ba57eab5c7755bb14
BLAKE2b-256 ed856115ae815f2ffd1320d805082ba8d3b44e00464209d33bcaa6d510ef0932

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5672f724bd30e4d1643e58985548a30849b59cf106606fab8341d64250e134ee
MD5 b39a45a118f5898e5c1af8ed8fc8803e
BLAKE2b-256 ec41cf0db59685772f381ca5d8f8de8bb904ee02356b5a426228784f71a780fa

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 5fafc622d3d9c2517306daa1ac0b530f4766e75691e114a0381ad9684ed32b42
MD5 39f6e4e34ebd667b20ba257aae75e31b
BLAKE2b-256 2bdca9f119948571db9a6c4f07438f5b661b1a229da6937461dbdb6858f19edc

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4542a59b12d5a1e400b76d9d538322c61746f4cbad87f7eb49022d34df4c90a7
MD5 58c769fb253863aa0039a21d08d43f24
BLAKE2b-256 486f9d8afc887002522d15b54dd9e469c0015d564a537f6cf231f6c85e2887fc

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5072f8b5e4a579d48ddc6eb71f270226ffa0cbd466af30f0f087637a6a890bb8
MD5 a0aa8f01738a4f92b21e0a398dc3117b
BLAKE2b-256 d54ca38857080a2aa3b0a9feb51d3d0655cab6de7ac051c966d95fe2e7d30792

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 de1ae27d9e6537b56af936271dba4e75f7dbbd92ffa27f09b54ed8364f57650d
MD5 ff2232c3a80af7b258d6a533618b4a4a
BLAKE2b-256 86ef08585800d273f990daa7d9fed5991755c716d7fb446a956c0b2268532b77

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ae5a87ee7862aeb0b1c1b4704ff231ddf7340427c6d40209d80813fab2b9683f
MD5 e3e1298ffcfba39aebdf0720dee1e1c0
BLAKE2b-256 e96228fc516fc4ad3ad914b4fef2dabe2db3a997b90fb0340ce70f961c826eda

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 460cca1b6689cace56ce9f9fffacb892ff3cf267bf9935ba3fad5ab93dbe3bcc
MD5 7d7bcc6b04f0cdaf106e84296974e2fc
BLAKE2b-256 97b43dca14b2d17327a8fc07cd95af413feb217d96bdf2e018bfc39d106d5c67

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ad8cf0dc4e4c5d734fa813071b63df1377f70501224574c3a55a1563a19b35c
MD5 966ed84fc1798d2b5ed66eb4e8ee905b
BLAKE2b-256 27aecb5282f40f7b2acac83392d7ce22f6f29541b3bcc51f51a095d95df2fda9

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 857ae81e6947128d3d23588d224f4a2d31f2703f7697bf79001bfbdea9bdd735
MD5 1c1ee8711294077335aad0d391f37e5a
BLAKE2b-256 b6bff2404c7153a61c9241d572a0bdbd1a16aa83acc1e10a0ed11f11f9b61abb

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241021-17086-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8c65e742e6ff8be946d61a2506e99058e7cdf4a9f2f9ed52ee7a69bc7631b7a2
MD5 78afc57a6c177af819c3e94f9f0925bc
BLAKE2b-256 0574a9074587760ea094cf4387c2c2ffaf1cde07fc9c607da61d8fad28522514

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page