Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/0f067ae38d9690b9a06a867aa8b66614f9cff494

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-win_amd64.whl (37.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-manylinux_2_31_aarch64.whl (25.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-win_amd64.whl (37.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-manylinux_2_31_aarch64.whl (25.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-macosx_10_15_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-win_amd64.whl (37.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-manylinux_2_31_aarch64.whl (25.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-macosx_10_15_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-win_amd64.whl (37.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-manylinux_2_31_aarch64.whl (25.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-macosx_10_15_x86_64.whl (38.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c3a00f0348cd72adaeb2204cbb96b801c944e201c26f8664f9424da372418d8e
MD5 11e262a5bfdcdfc85eeba62a98c1e477
BLAKE2b-256 888c2220e7f342798e74939091618cfc8535cb32cf7c8005de0cfeeca13233c5

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 0b4d7069350dd0b52da51b6ba5887de6316545f7981cede502735a708ee79512
MD5 e2f18bc275f58226ec7478719293b587
BLAKE2b-256 eae804ee29624e1dec9a0673e1ecb02d888fe45ef1665e9f7d5b0f576337b42d

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e622fb114094ba5983fa53898d35f87521c4d8cd5a6d4f55c137f60e65aced74
MD5 ebcd0f2674eaeaf4bb7e8f60fd3fc498
BLAKE2b-256 aebfdd07ae37df2886ff052eb236d823ddaff7f3279712fc9aa4174fa63451f6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e4a95d2b35222ef48505a46fa986b84f386b04e245932f3f2e7af404ea2cc01
MD5 ab028fc35edaabd8f628ab1cb2cb4f41
BLAKE2b-256 1ffea7a8429ce1db6077f848ec911a2bc42d148cd2f938b3f095cf20658b1dd7

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0ba8820b046aa1a7aa5adaa48b6d3ccee3a56df0d498f458f5a8e6975ecbc136
MD5 856016a1741f2ff8639e7582b3043bfb
BLAKE2b-256 bc3aba8d1b710fcd2326916f1406326da1143b61558b558c7560198fa1f5e9f8

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 91ef65a3533c67a8a5c8221eada77f09be7b4bb11f4242620a6deff628db135a
MD5 13070155b8bf166b99d2e2b55c07a95b
BLAKE2b-256 0c82daf04c8f0c9581dc2a818ad937cfb9c9043caf54b4daf7b5ab6ed69bd9f3

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 fc41a9a039e9bb93faf850ee993202e469867d43ade37b3c8fdd8dc0f009cff3
MD5 02eb5fbc869d099bd478f5421c3600ee
BLAKE2b-256 fc455730fba205070bf197e6a8d98da20b4b919de15d727fef8226b43f630e0c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9499055f3cbfeb8796c5fb69e766dfed17e829d781cc313486a8e370249b70f7
MD5 9b94d6afc05c7a390254fda5be764321
BLAKE2b-256 063df428c214d97347902d6f4b187288c58cc45957eb5be63e7af215707a5d08

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6a0c81f8b9547379f7d3b290ae65ab625cc2e4d8d29ac307ecbd5862a5b4d49
MD5 046654f351589ba3c356335a1bd7c93b
BLAKE2b-256 d145096cfe40a8495b684dc7c4ec4878708932a0650e8b4019b2e6b481181616

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0de445e72718eb32dcdc550a1e5527345afbbcf9caf0adac86cd5b3b708773cc
MD5 608510fe88a74c11a44b005d461ee9a0
BLAKE2b-256 0906b06cd316338b3bf2c5fa47c9d62d4a74596a2ffd4fff1d0fdf03e6f0e19c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5e2bc84b826986dd5dd8e085e9e7a9989db97da48382780c949cd157806c9836
MD5 2f859077589a7b371f215b85f29471a3
BLAKE2b-256 65516354375a7b99a924b0593d538de425736e2c5aa4d8a9847aba1cdb373e67

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 54203cf07d878e1a8bac391c9e08d22be2195e1722de630b7081710af38155a9
MD5 36a123508be7f9826c3eb66cb2c38ae4
BLAKE2b-256 3e4ab6c549e4ecebe14b8a75578d1d14047c547fa5da6548fd3a5c3b8b65d5ba

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be7b8799f4f45fb526dc53065797aa1ce9053b13bb89fa9bf79f7e3b71c729e3
MD5 053d7ca8b852539c8a3196e6b2e640fd
BLAKE2b-256 8a842503f3d47af612a38f4675e209862691f77c342a91e72a5c6e7b689d942e

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e76187e80f1528ac1849ca7275ee6f7129a405e35521f50df0eaa94d8524a4f
MD5 8575566030811cb92a96b55f8505f1b5
BLAKE2b-256 f74776b845b03f7d4996361a1283a403883f09d27a2a3efb4515b1880623c63f

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ebb30b2e0bd59f8a6559295292f1f364e8198ebfea9521a2e80ab057db55909c
MD5 fa86323ec2cbfdb9b9efd2898674f6ed
BLAKE2b-256 c7f0bbff685a7b4532f4ec3d64ea10926cdea16d36af17448afcf98a51a6e972

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c75e4303c91e360aa698b73219d9f8f79d55de13ad772a868d91c57e3d946bab
MD5 4c7f94ebe66725419162ba380651280d
BLAKE2b-256 a8c798342bf56e484140f5d26eb3724251bad4216cdfaa91d1c750c1c5b8b8cc

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 929398f0b85bc322c5a26fb834cb03f414fa8ff9db52b97a7104cff57c425a84
MD5 00241254302859818c4def7ffbaff6b1
BLAKE2b-256 3c9b69f2128e69989ca3265761aeb135c9bbaaf671a482732f331160fa8a7a59

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e66946ae082519cfe3586d3eb50faa8fa6da242c0ea02183c6a80cb99e899f27
MD5 1d59f3bcb310f77cd57a6b74b5e580c1
BLAKE2b-256 deea62f789542939ce6c943577dfc0e6777845d7011dd472c5089615f7cbf585

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c11bc0dc54d0d2f01feeec2b54eb2212f4f7cd26452020176cfcd89ac8f15b8
MD5 e7cc210e122c5f3eb5ad85471ce28d68
BLAKE2b-256 2c21853bd64af2e7945991dddfe7bb3f90615c91592e772d5adcd31a138ab350

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241025-17158-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 897c972d55956b54a31560cc12217611fc9b8ff81c24c737605e3ea7f044b948
MD5 b8c13eb08ef9a6e04eed1b45adab691b
BLAKE2b-256 0ab2897cd846199df7734f34c0529af5c2be8b6ded87cc63d50174d7e9785f76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page