Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: The openvino-nightly PyPI module has been deprecated and will be discontinued with 2024.5 release. End-users should proceed with the Simple PyPI nightly repo instead. More information in Release Policy.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/a7ccc5e0efcc55455e4f2988489a64d70e6be0f7

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-win_amd64.whl (37.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-win_amd64.whl (37.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-win_amd64.whl (37.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-win_amd64.whl (37.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-macosx_10_15_x86_64.whl (38.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2a57faeb11c3d2da67cac75e08b940fdf76adac258bd4754854166372e951aad
MD5 bb610855af187597b987c503180356f9
BLAKE2b-256 4d58ddfcc0b8f186bfc5a128ca5b9730e620c9a4e07abd401aba3c6f8fb90a72

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 29c6193c9b799c527a8aed515e70b738b5d11ff728b6e4d10f6ad29daa2545a4
MD5 f751689fe6c93a29df5666dea1024ba1
BLAKE2b-256 3d7a8a712620a88b2a43e5a8b5a4fd250c7d3e145e991c6573ff42c453bf4018

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65edbc4e8218b38af0e976e60ab7a4a2c53e9c1448b9d1b013e33ab24b4d6bdc
MD5 272ea0527b791610ebe6c95f9aabaf89
BLAKE2b-256 549fdd77e1c74b2cb2cb480894c61ab9ec536a4feed568788f8a586433dd49d6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee6c6a547af562fdf7c65d34e383be98c653922bbc46ea9bcd1dfc05ade81a38
MD5 3209597e208e03c9dc7bb9f7466e73dd
BLAKE2b-256 e87ed7017e2d69f4fbbb83dd252a4028b3e94aeff64f26e659f928a20a5ed27d

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 02e72a82c54308f12e53a5067d0bf71366e7e050ed884f04e61bab99dc9d24cb
MD5 9ae9c52b447f9d84fbc6e2a66e1773c7
BLAKE2b-256 37081a5866868b66e152a88a0907d72b2f3f7e6be2c6ee1b998f3db89022448f

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4aec061f4a311eec95b9cd3fc479dc8d13e412bca29595c8364f3da1bac5e499
MD5 fef4f1c8e90ef20ecd5ad80702361d2e
BLAKE2b-256 5ec68add5f68b9ef2bb423ca76a61f2d610f974042ad8411b1a73324b1ef7715

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 60075de6cd41b5dfd0ffb17f4a0fa9c289f4d9d0ca858942c629d197d4dfcdf0
MD5 9ff5bef08bf26961df84e86ea2f891d6
BLAKE2b-256 c616da9f28f81eab2ff81d4bd1376c6ecb01bbada89ae56540e8b901a380541b

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9cae3c12486770f80c11912f6f5fac1a98f112204fb58a1183d82f7ce046c641
MD5 0628c9d1702cc54147c22ef71a6ce3bb
BLAKE2b-256 55e800b8b9c69884e22d2b209d4c54e988f3628ef869484a238b44188b3c9aae

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a5659c9c273666020fe5e8e06e6ace2b838f91515588401aced87d848edb454
MD5 b2053091bdf4585741b3ba63b84aaf05
BLAKE2b-256 da8bd08aa5d8d7221fd941ecdd684232c9928dd08ea9f34b5ddb4fc7ffcb499f

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c6ebb9fbca52326533a6a3733d09043f88793fe99574d8a35a3f05539b677516
MD5 603e89ebcf765f666d2d54fc0b060a1c
BLAKE2b-256 839763ef066c7e775a9228052da1d98b6c1a6875c1ab8fde4e26b61b9ff0d10e

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5d84e46d8a7026640e92b9f8e5dc33f33dd5f30afc3f9689128d1149c8416976
MD5 8b68838c98be4b59040123c1f7cd043c
BLAKE2b-256 30f11175069184f0e86e5582d78f5786b3921bbd8f0deb45bcff667d4d01050a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 1efa54fc91ef6bd7b9ef288935be8167cd60e34692e51d19bb303277bd1a56a4
MD5 3ba1dca21d6c585170673c39fd71f15e
BLAKE2b-256 f9a3d0426ca926df2f8181975e93b8fb3de1403dded83eed95c373d563d46485

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7586472ebdd9543de94f7981e285b94f2eb014094a3a0ab889aef4ad45bd8b8
MD5 c0e26f4411c33b341fc6791617bd4cc8
BLAKE2b-256 fa727c4b7736988dbe777fc6fae49db568bf89a12dedd4bedf08c61f7b333ea4

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d466e6327417b6e4f1989af22f6bd536c04be9e57a7be77b4167a7a92c0adfd
MD5 c74df7830812b82030165461c2bed1df
BLAKE2b-256 e13a73191ad4676634bad572d8f09a0db00c09e0dce19e031db1c63083254a3e

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 80d05827c7ffe0664d499e70a1a8c0cbb6dbcef60dc2f8de16d9e29dc9e856be
MD5 1e2583da94aebd11112f5ee8b028e06f
BLAKE2b-256 8a58dd8b3852fadb88a2a1646fdf48cbd3e4ce060e98501da46a4b9574ccfd52

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b9ee243ec5c628637af3445a9225585d74acaf8a02d08e2a6ccc354f129c004d
MD5 632d55f0d9f53b83f07d669c11ada5c7
BLAKE2b-256 5d601cddda5b1b4ebb1ffd5ff3bea1a0a7ddd5ac52f554d81f2325cb7bd7e3c8

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 393075006baf8b7822028aa9ee94ecf60b94c47dbfe3d96a3ff3d28a3a14f8f0
MD5 d1d51d9ed0f68901d6bbf81f6225323c
BLAKE2b-256 b23413967637dbe411238fe498b6e5e804f55d4b99ed030ff11df11433b8bae6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45803fb3a109f0365ec9e3700303bcf662212521067a88c458846f204609d294
MD5 8be421fbc8075297537b2694c436c42c
BLAKE2b-256 7df1ccb3c1fdd75374d8c1ee5f0d07c11562186a0bc136f4a20709cd4df91825

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4db939ecf1d98dfb18cc86af364a8ef5fb633e0180893f4fe381d45a87e1879a
MD5 eb5431013ab7cb3881a37f3d36f7a3f8
BLAKE2b-256 86aca28fdd21cf447a038008a3deda248d186aa7423e711cdf29bedb0eb3949c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241029-17202-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4552fb55eb5f9b17935d87819ae884dfccdf444877624ddb2056fa9ac161c119
MD5 af19c99e3d8349805a2884b9f347b5e0
BLAKE2b-256 34673f1aa7d871aff9a371fe871f376e135359aa215f1e0349b7bafad1366cb2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page