Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: The openvino-nightly PyPI module has been deprecated and will be discontinued with 2024.5 release. End-users should proceed with the Simple PyPI nightly repo instead. More information in Release Policy.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/2441dcdbcf2f9e996679f72f70faf7ba611fe928

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-manylinux_2_31_aarch64.whl (25.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-manylinux_2_31_aarch64.whl (25.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-macosx_10_15_x86_64.whl (38.2 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-manylinux_2_31_aarch64.whl (25.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-macosx_10_15_x86_64.whl (38.2 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1543311a7116cc11d9243b5700a4d75cb51162059fed0dc0412266dcec1500a1
MD5 7ce8aef172906dc74d2b4903b3a0ca5c
BLAKE2b-256 55aefc2c59e2a85cae74b2efefc781fe976d1b3827e16836b6309fe4f088eb07

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 fbcf14e3158d5adedd86c5490d67a73eaa09f24bdba8595cce59c72d104a3773
MD5 1bf5a7547d3cf088cd460c27cbd90fcf
BLAKE2b-256 efe9adf037abd5ae3ad2b3182cd397e609c65dfe072f1c47382376ea181050ad

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7725b948d541c6c36707d5fd9dc34ff8c80a0027cbbef0f31d3c785b0e54e313
MD5 1eb9f278f75739e2b0f07c9c2e480776
BLAKE2b-256 3bd88d2a1749caa44b666bf9fbfb809249df876dbc1533910f84a10113d36982

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a6a6e85db130599df86811065e5cb006ef6184e45e46ffd8689961da0aabd7f
MD5 de1d5331f7ada571d02f6c2e14eb8418
BLAKE2b-256 e31a4e127650e9f9d06d4cd60fc0a6fda9337cebb2fea811fc46ed4327bb2976

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dc46b6a4cf9254ffc2f4dba1a3fe101371ef3c09124f31a010a8e3f390abd107
MD5 a8a57805a62f6e09fabc20a96f985b4c
BLAKE2b-256 4b2909496c53cc902413c86ee4b7ea8fc15ddb6c063a85f0370422dfa54cc7b3

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 40fc506a6dc388ccd74e53a21b06d2a924babc091f24d96947fd0be42659ed36
MD5 79c64b8ba3a1082259e23551ed691244
BLAKE2b-256 e529135f9f9ff54e6e42a9e56aa4971bbb509cbb1e02bcee32382d66aee212a9

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 f5a5279cebd2466308f27d6668816de2bc234bc5a515a504ad5bcc3e78fcfb2e
MD5 aff4c765a90a80316f577bacddc246e3
BLAKE2b-256 ef1d3291d3bcbacf6258b0e4038d6a2ce64f01b78086b1cb840cb5e106d2da80

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57535b85901c6c2ff20466f05b708ef10a4068096a12f9cbdbb889fb480a901b
MD5 61032ea2a7632acefc42000e76ff2999
BLAKE2b-256 44fc7618e9c5f81fda0c6350d3e051adbf21add75031937891b83a93c95be4cd

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c34113bce26aaac3091e217aa4ae814fc1223bebc863b052d7b8eaedd82b74e1
MD5 dc5ef8ca33007249a743423a6105e23a
BLAKE2b-256 8efbade53daab5d40082aa10848982bf3d2ac991711a74355ac472bc1926be9e

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 caa7da5eeb8b0faa82e54e0c279cdba07945edc1ff31d9aa3192e30282b90632
MD5 af7935ddccc3adad76d9b0afec495cb9
BLAKE2b-256 56d3f8a12dd6c9aba503eb8f63e39c72e338de2a257d54bd110554618b958598

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7f3f51a7a3f2ad392fae09519065c7cfec1ad0b16d3a17c2a8cec736e96dd984
MD5 5bf535556cadbb7f8bdaf18fce7f1e5e
BLAKE2b-256 3ff9ac5a23e9e9096335b3465bba17182c60ed4cd69dc69e05db9dd3a5bd1702

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 b4f8fd94802539ec7a28a90bb3803d923264a0470a53ead4da1a2de760cf0718
MD5 3dd61ce609ee42ea7dc20bb55d6bd8dd
BLAKE2b-256 097f52786a6c94260de5c599adbe690ed5b344df156a709c8b31cf839eba4d2b

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ee50bd0ac9e49f379b1e7a581efb9576e75c882705c78385e2fcb80ad44b4b5
MD5 9d6fbe0f7422824b05d90aa168ac7b2b
BLAKE2b-256 5703f4f208f136353f460686035edd94581961d8abecd5088f07ac455cb62620

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 638d7f5fc80af6ba364cdae6138cc187c8c29e7960d71f84935d874a656f968f
MD5 1126df6044029e807dcf8e180393bb1d
BLAKE2b-256 b18d5ebff0bfe91c1c2bdcb798f2cfb1735c32e920e3b0c2b36ff1f48cef2934

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7af28530c84478054b0e27263dfe294e7abffbdb68add87ced1dc3feabab6fde
MD5 85aaa5b1b713a41be46ea68dae417ed8
BLAKE2b-256 be5870d0991a3d41a1754c16afa382c8681fbec35189391b92689117efc59d9c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 eb9a75d0d229a632643313d30d6b5010485c975202cde36ce9f5ff4b3d1c0d60
MD5 20305bd5f2cac8dc66baa3daaa4f85b9
BLAKE2b-256 a06d49b84c3284b01c3911a6eb3fda5b6546411cad8286807ed3e57fe4fc5d16

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 a86145d165803b8ccdaf3c4080a4c00e6ee1ed2a79a818368f8b8cc672e5df54
MD5 7f7d3a66bfff125bf8a72549348a2596
BLAKE2b-256 ebd23ee3a0d6cbc5118960b3aadc9fcc01c256f40b228e8d5cb00441f15b6a89

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 031edbaa33a2655ef53a09e24afb85ff6ad25702a047bab1967227914dadbcfe
MD5 f9b5467b126e4188a656976d4b3c560b
BLAKE2b-256 9639970d2f949375803e10d2877cf27735d2b21ab3382bc1620bd410bc4832c6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0451dadddc700d14a27f289929e09cdf189549f261bcebf04542dd45772b15d1
MD5 393f30eb1ac74ec0172697d23d1820fb
BLAKE2b-256 746f95809eb11f6a22c1389ea0e2a1dc6eef6812bfe6163ddf651111460d674a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241030-17227-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3b0f32b8c24115eb3defd62e9f4de3cd958abb85387622fe4c1ec87a038cde58
MD5 791f43647f4265522b93eafccf10adf4
BLAKE2b-256 43bdb2819b3762985ed93aa5ec2b2beec498e4b7d1f28160b0b6064cfe372ce7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page