Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: The openvino-nightly PyPI module has been deprecated and will be discontinued with 2024.5 release. End-users should proceed with the Simple PyPI nightly repo instead. More information in Release Policy.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/b9a94c3f8b83deb41ba2e748150d70157784f96b

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b41371d5403e9e81abe6b5c5b46a780dd62a4941290a7fac9aa2eb4e1d4e281c
MD5 655a74e1ac5826fbb337f333adcfbf78
BLAKE2b-256 596beec995cfb3c4d93cb93cd3d3a6faf0ed1678789d2491462da1426ee8945d

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 9eeff0bab14730563393d51750e050023a010a01d452f3d5c58626b0b22f5db4
MD5 b9dca2587eba92c6a62339169d76a454
BLAKE2b-256 5c1b904e935129711bc910736b41ce34ee9dbbeeb46c2f2bb8d3fb74e7eca4f6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8eaf85a9a2d8e8ef7c600ac02a855162408e7c44777e529878b0de18dddfd3e
MD5 0e3baf678065504fea035a9cd13f28a2
BLAKE2b-256 b54339fb28e45495bead6ff322101d0ba96e59f885c82ee525f4490d4b898e01

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4627590bd88223df4b12a3ca2fc32b656de033872365d75599688795b669e991
MD5 939dc45a47fc1fc52ee270e23029ca42
BLAKE2b-256 d3dd981b0c8f7e5a8b6079876d67dc9f83fc2963ea0137b5c281acc456e843be

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1d1f65e6654900858fa3797f53d6d83006b4d8d38195820124b9d9841b9ad08c
MD5 c21136d9f2a30bcf6f1e56c29f08984d
BLAKE2b-256 7ba8d50c97dcab4e5e7ac297b338dfdb00d2fe4376d6ca07bf15d4ba37f96294

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0a10d80191ffab6cb1d1a4980bbcc4d60cc83757159be238c0e2665b21fc9e16
MD5 b69d0dccf8c1e2e521c026feeea0302b
BLAKE2b-256 b4d240c97264397b02d4598733793198ced84df6ea57fbf5cc067d07618bde79

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 49dfa06cd56110ad699927ac2bf1430f12ec0cca826033cac9beb4257b5bb454
MD5 7bb4ffb3c2f0a2a2eca1146112c87271
BLAKE2b-256 4a20119b22783fa49b2e8854a796128b7c783490c55372986e7aa1a3bec54b2b

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a956b926ce016217b897aaf2be677d12fb82128e5f3fd788fa97eef1953e94b
MD5 d32f2350e265887c877e5c00cc668166
BLAKE2b-256 0e70225621d70134fd70288f8b2dcc373278b8564cc957cd304569a1e17fb1eb

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee6fc0eb233d3e9e3935735a66a19e862aec6292eed44cf86e94f164db485fe3
MD5 667afd0b51b49a8c9605c64db65125c5
BLAKE2b-256 eda2b2db6468ebdea2171c91b8d91a773ff0af5afe483a94c9a229df56319c39

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 de3df59e971b1c2a31760f817b5622d7850597644b6b3e1a8d657b6feec8b979
MD5 97d2de47d3a74823df98ba375f0313f4
BLAKE2b-256 b7aeab63c7947386c336732fe0330fef4a34c00ef796aae633346f7f5bab4a8c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f67a9c7ff253a0f1d064926d80754580a605072d2fab2d3de6edd41b73e7ba01
MD5 cf2528114ab0c6ad513edf607207ddae
BLAKE2b-256 385bcc7fcce686188edcff1f34ec46087b716d9494e21ea09af09d53396f431c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 3d2b580a08ddb4654f7c8d108e53a294ea93784f36c55d478f37355aac4964cf
MD5 fc63a7db632eaf5181e1bf86cdfdad12
BLAKE2b-256 dd7c7e887a9a2fc54dba0fe30dddc91361c1da04ed6b32ea9b8cf69b55af50c8

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 059f9222754da84dca843b858067a3ccc82a82550640929943ca95995a5f682a
MD5 dbd872be079f9399ef8f6691a14af3b6
BLAKE2b-256 c859ed454da03f6a447f4e8b006ff9f6abb47e76afdcb5e06ac9b93849daee6c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2434695748d34edecf1962e7cce0dc04246224541846693202fde8287d7ba220
MD5 1e0523800f98b6991fbe2e0eeff0d8d6
BLAKE2b-256 7ebe6c6993aeae7224c17f5e719941a0050ed0fd1028ca213c8e34d8aae8410e

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f223dbea32bd211eb2e2b2739c61093603182c241e2f7e13f67ecdf3539bcd21
MD5 c649f14aff519a08a413ecb8b41bc569
BLAKE2b-256 e34ed679aba9f00c21817a78ecc971d6568bc98e19bbd7a708d3de7a15c5c4a3

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d54621c8c29b08b29a24b80001f55eb2a50c29c7015f5320844e9b0286fcaeef
MD5 ecc8c29105227873ff42635dc7906270
BLAKE2b-256 3d0e0fad2bbd41feea258c0f709ae8aa2cf928d6aee76808abdc22b5e30f9b8a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 00de9002c8f88c34c656117683a629de5b03272c95ade18b76dcf6dcd3b97822
MD5 867c38d37500514c2a182c6e7cc0c1eb
BLAKE2b-256 ba6154626b043160be6f7f37f17ca5a1d6d9be9144784c1b9645713a4af9bb60

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8966e71d9d2cb32ba79adc4f1aa81fe27e1ca29ed59085916094d1609e1bc8fa
MD5 e9598ff064ddde24c34289579267a8eb
BLAKE2b-256 1e99eefab6a614b95bbd2cf3a03058dabcaa32a1818440f883848d8628ca51d8

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79acc61535d0e886d33a26b37cfd6ec1a5b7a19263354d3dcf625e6a0a784e47
MD5 8d0b0d0756b6fd15f72a208dfdd769d0
BLAKE2b-256 0599ae32c623559000f9411b9b1c17cb8326717d628457318894001c9dc23045

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241031-17253-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b09279b48590a6b457c7405162646e6c6119f15fe9831e3e6354c40b31f58dfa
MD5 afd42c92008db69fc06eba939104d5d1
BLAKE2b-256 e91ca6645376bac3f92d56831bd21dfcee54128eb4f7b4f4a69b7cfea7e6bbbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page