Skip to main content

OpenVINO(TM) Runtime

Project description

OpenVINO™

NOTE: The openvino-nightly PyPI module has been deprecated and will be discontinued with 2024.5 release. End-users should proceed with the Simple PyPI nightly repo instead. More information in Release Policy.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

If you have chosen a model, you can integrate it with your application through OpenVINO™ and deploy it on various devices. The OpenVINO™ Python package includes a set of libraries for easy inference integration with your products.

Commit used for current package: https://github.com/openvinotoolkit/openvino/commit/caa1e6af13139692a34cf37787c9c79f949bcaaa

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available on the System Requirements page.

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package may work on other Linux and Windows versions but only the versions specified in system requirements are fully validated.

Install OpenVINO™

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts. To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip.

Step 2. Activate the Virtual Environment

On Windows:

openvino_env\Scripts\activate

On Linux and macOS:

source openvino_env/bin/activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

Run the command below:

pip install openvino-nightly

Step 5. Verify that the Package Is Installed

Run the command below:

python -c "from openvino import Core; print(Core().available_devices)"

If installation was successful, you will see the list of available devices.

What's in the Package

Component Content Description
OpenVINO Runtime `openvino package` OpenVINO Runtime is a set of C++ libraries with C and Python bindings providing a common API to deliver inference solutions on the platform of your choice. Use the OpenVINO Runtime API to read PyTorch, TensorFlow, TensorFlow Lite, ONNX, and PaddlePaddle models and execute them on preferred devices. OpenVINO Runtime uses a plugin architecture and includes the following plugins: CPU, GPU, Auto Batch, Auto, Hetero,
OpenVINO Model Converter (OVC) `ovc` OpenVINO Model Converter converts models that were trained in popular frameworks to a format usable by OpenVINO components.
Supported frameworks include ONNX, TensorFlow, TensorFlow Lite, and PaddlePaddle.
Benchmark Tool `benchmark_app` Benchmark Application** allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

Errors with Installing via PIP for Users in China

Users in China may encounter errors while downloading sources via PIP during OpenVINO™ installation. To resolve the issues, try the following solution:

  • Add the download source using the -i parameter with the Python pip command. For example:

    pip install openvino-nightly -i https://mirrors.aliyun.com/pypi/simple/
    

    Use the --trusted-host parameter if the URL above is http instead of https.

ERROR:root:Could not find OpenVINO Python API.

On Windows, additional libraries may be necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.8.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu*, execute the following command:

sudo apt-get install libpython3.8

Additional Resources

Copyright © 2018-2024 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

NOTE: This version is pre-release software and has not undergone full release validation or qualification. No support is offered on pre-release software and APIs/behavior are subject to change. It should NOT be incorporated into any production software/solution and instead should be used only for early testing and integration while awaiting a final release version of this software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-win_amd64.whl (37.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-manylinux_2_31_aarch64.whl (25.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-macosx_11_0_arm64.whl (29.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-macosx_10_15_x86_64.whl (38.3 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b3d2e38c26ec3ca5e4794995156bc1ae7155d2db309f68c9af90466c967ff94c
MD5 ad63d3f0ad552ef7349e4e6a1732684a
BLAKE2b-256 2f2202eb13601e426bbdba37a0fb4875de1b1858201174aae390963f502a2fca

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 17a50c932196fc5831e9516a781b8872ed290d9a1a5f949073e6f10f8e0a4662
MD5 478ad7fe6cde9648fffbc46a654bee31
BLAKE2b-256 62ed0b543c862cd8621563e517f3d4b529f81eca63f85fe8cadeda62e8cfeca2

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96e8be14baa730e896f769eddb0ec44de521e153682f700e3b14a56de2e73144
MD5 c434c8e4eb67b041de7932769f55f38b
BLAKE2b-256 2582ede018de3778b2ae96361f9d3edf813271441927b26efbb33f79228b7b0a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03930e452823a32e5abc9e52b3982feffe54762846e977f521e3d7da17ded551
MD5 2d64f89842c6b75342fd353fc4f08330
BLAKE2b-256 f6bfd9ca66e21c539a19d0e10062182ecb54a94145d7ed949b1d118849514e49

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 aa14abcdabf903243e5a3aaa01cd2bff4762ca2e76e77381c78679ed948df946
MD5 0ea24ad50439edf9440807ad6e0a7d97
BLAKE2b-256 a859258bf719a466be6f354007066e84935f2d82dbc25d0be9507283f0c4819e

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d02cfbedc040886801af020d4336991e2883c432b870cd81eb41c6682045d991
MD5 3680f70fb5c90d8104a13f53393f039e
BLAKE2b-256 14b41875c70023fabe9a313890b5cb61e8dc7fed2f0cc865e40e3f354f08f0f6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 9d27377aee7689b381068c9a54e32416120c3f889c8ff42d09421f764b3985a8
MD5 b41774ba492c5fe8bfcebfeddfcf6983
BLAKE2b-256 8312bcbf616943214aa3aec84dbc351651ceb00bc900c21effcb34e80850a7d6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03f296853158f5884e23ec7b501637138197061389678094559f98aeeb525488
MD5 440c809e0210757e982da722b35442bb
BLAKE2b-256 a43c100c5103536b28671cadfb05ea7173bea9c50da7c9141db14f8ec960e9db

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4779c962f66cc50aa33429961f203208ccb9caafa25315db204c6417338d3de2
MD5 0be29b4e65e75b0274137419d764cbca
BLAKE2b-256 abd8db804a25cb45db3804f417b21f7468e4d20dac0e2d15fc034ed640b51496

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0c30a734d3f62d9b89d9b6b4e7e4026cfcb50a65695e2345d3d8f9efd084473c
MD5 7b105d47f62f44895396ebe0d3cea164
BLAKE2b-256 72f9d738f9643a1fb9748b333e7627c04228db681e27acb7de3bc7374d23dad6

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9d59a52132696b35a678b0f85168f913bba404646be430a53365bba5044a5ab1
MD5 19fc7d806b6373f3d60bae25bf18fad2
BLAKE2b-256 2a2045073c09aa7fe5953119e6c0db3077d5518a5bbac5e7642c150d20b79219

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 3fa1dd411dd4238b230bea3b7ad09e75e3e02bdf3f9628bf30ee46c89d4a5755
MD5 16f8289076a9169373770a2e6c764873
BLAKE2b-256 0f0c13db6aecdc9f6b8952b1b38409bcd8f1cd4abd32f6057910d0d17acdde0a

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94483f5d4508dee886bcd4a72634b5befd6e32cf44c277e4c5d745902f02bdf0
MD5 e4162df28cfd374b10c3ea634bb720d9
BLAKE2b-256 17a63df942141ef640e0e7b9908f48e9bb7dd141929023f3f575c07674296739

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f266aa6027925f793535bf953f6b0138816ec60c981065296af6dcf3aa810073
MD5 18aef9f82a0f779b6c4c44cbf9fd38c7
BLAKE2b-256 52f98942dd9522463eddf9750381933b08994913277123c2a811e5caf92c5d63

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ab18b12ec9a4f356ea11dc429315ff7486d50d392c94758563632c37e8377d1c
MD5 66455be11aeef30bb73765c142d0e2d5
BLAKE2b-256 885fa8e906425ffc11ff03cc987cc69c85db3517d4b9f7a7d3b2b89d139ea994

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 caf8a330a367ddcdfbfd39932c678d6b51b093f601c44229a517263e953901c0
MD5 002727ce0f23c71f4e1061cccbf0c214
BLAKE2b-256 21f364cae90639fad4a54b4f02ae35baafc23b82d042a30be08975a02a76be83

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 7ee4c84e542fbd0dcd7e7f228500c30dfe4e3d85c7463f121a7cc259b845e2b5
MD5 f33a316c399c5d9daea8d8664a1881ea
BLAKE2b-256 a903cacb617666957d7b435179084c72c5dcdc16795cb3911af265af87a1fa40

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc924633ecbfed692541787030cce7e48ee5daf4a57aea9941a83b741ce37de1
MD5 84d4d01390d0c6f1e8b02011a483daec
BLAKE2b-256 f05b175177e27e855120126207ee27e5cfc3f26867984e66203564c2871ebb0c

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06b405048a48409e04587c996386be32fb07d7ce8c01c8ad04b3a5524c76aef7
MD5 1e05f5f684312a3e0ae6d9aea0018c67
BLAKE2b-256 da19e320e7669456624655559792ef41ef5c84ffcac5dec81d1caf1007486bd0

See more details on using hashes here.

File details

Details for the file openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_nightly-2024.5.0.dev20241101-17257-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dc4b4059d672fd9d82bc8f1c4a35fb0c94cc8e3dd8029c66feed2f4cd988bf61
MD5 dc4c38c9ce495de45bb431801b194bee
BLAKE2b-256 242809823d11b6b1fb13e060e3325cefde9df5259e4682e76d76989b47d42b66

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page